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Abstract. In this work we will present a numerical study of viscoelastic fluid flows under surface tension effects.
The mathematical model adopted involves the governing equations for incompressible fluids with free surface,
along with the constitutive equations that describe a viscoelastic material. From a computational point of view,
the free surface dynamics will be handled using the Front-Tracking representation with marker particles, com-
bined with the Marker-And-Cell (MAC) method to discretize the equations using a finite differences scheme. Our
current interest is the study of small-scale flows with droplet impact, such as the collision between two droplets.
Viscoelastic models will be adopted in order to represent the non-Newtonian contributions on different post-impact
outcomes, e.g., coalescence, separation and bouncing between droplets. Considering the classical dimensionless
numbers on viscoelastic free surface flows (Reynolds, Weber and Weissenberg), we will present parametric studies
on the simulation of droplet collisions to investigate how these parameters affect the final outcome.

Keywords: Viscoelastic fluids, Free surface flows, Numerical simulation

1 Introduction

Non-Newtonian materials are found in many different industrial applications, such as in oil industry problems,
cosmetics, food products, or in biological fluid problems such as hemodynamics. In particular, the modelling of
viscoelastic materials have been the subject of many studies due to their complexity and the difficulty in finding
appropriate mathematical models.

In the context of computational simulations, an additional challenge is the presence of moving interfaces,
such as in free surface or multiphase flows. For free surface flows, it is worth mentioning the recent works of
Oishi [1, 2], while for multiphase flows, the work of Izbassarov [3]. In this work we implement and analyse new
computational tools in order to also incorporate the effects of surface tension to the viscoelastic models. We also
present numerical ideas to handle topological changes that may arise from these complex fluid flows.

In our study, we give special attention to studying problems in which the surface tension has an important
role, such as flows involving the impact of very small droplets. We are also particularly interested in simulations
that present moving surfaces with topological changes. These changes can be generally classified in two types:
fluid breakup or fluid coalescence.

The test problem chosen to illustrate this study was the binary droplet collision, in which two small droplets
collide against each other. We chose this particularly problem due to it being heavily influenced by surface tension,
presenting very interesting topological changes and because the literature for non-Newtonian fluids is still scarce
(especially for viscoelastic fluids).
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2 Governing equations

The governing equations for isothermal incompressible flow, are the continuity and momentum equations

ρ

(
∂u
∂t

+∇ · (uu)

)
= −∇p+∇ · τ + ρg, (1)

∇ · u = 0, (2)

where u and p are the velocity and pressure fields, respectively, ρ is the fluid density and g is a source term (usually
gravity). The extra-stress tensor τ is composed of solvent τ s and polymer τ p contributions, being written as

τ = τ s + τ p. (3)

The solvent contribution represents the Newtonian behaviour of the fluid and is given by

τ s = 2ηsD, (4)

where ηs is the solvent viscosity and D = 1
2

(
∇u + (∇u)T

)
is the rate-of-strain tensor. For viscoelastic fluids, the

term τ p represents the polymeric contribution in the flow which is generally modelled by a hyperbolic constitutive
equation. In particular, if the Oldroyd-B model is adopted, the constitutive equation is

τ p + λp
5

τ p= 2ηpD, (5)

where λp is the relaxation time and ηp is the polymer viscosity. The upper-convected derivative
5

τ p is defined as

5

τ p=
∂τ p

∂t
+ (u · ∇) τ p − (∇u)τ p − τ p(∇u)T . (6)

A non-dimensionalization can be performed by scaling the variables as follows

x = Lx̄, t =
L

U
t̄, u = U ū, p = ρU2p̄, τ p =

η0U

L
T̄, g = g0ḡ, (7)

using U and L as characteristic velocity and length, respectively, g0 as a characteristic source term, and the total
viscosity η0 = ηs + ηp.

Removing, for convenience, the bars in (7), the non-dimensional governing equations for isothermal incom-
pressible flows of viscoelastic fluids are given by

∂u
∂t

+∇ · (uu) = −∇p+
β

Re
∇2u +

1

Re
∇ · T +

1

Fr2
g, (8)

∇ · u = 0, (9)

T +Wi

(
∂T
∂t

+ (u · ∇)T− (∇u)T− T(∇u)T
)

= 2(1− β)D, (10)

with non-dimensional groups: Reynolds number (Re), Weissenberg number (Wi), Froude number (Fr) and viscos-
ity ratio (β ∈ (0, 1]) defined as

Re =
ρUL

η0
, Wi =

λpU

L
, Fr =

U√
g0L

, β =
ηs
η0
. (11)

2.1 Boundary conditions

In this work, we adopt a single-phase free surface formulation to model the interface dynamics, such that
equations are solved only inside the liquid phase and boundary conditions are applied at the moving surface. These
conditions are modeled by the normal and tangential stress equations, given, respectively, by

n · (σ · n) = γκ, (12)
m · (σ · n) = 0, (13)
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where n is the normal vector to the free surface, m is the tangential vector, γ is the surface tension coefficient, κ is
the surface curvature, while the total stress tensor σ is

σ = τ − pI = 2ηsD + τ p − pI. (14)

We non-dimensionalize equations (12)-(13) using the same characteristic values as in (7), along with

κ =
1

L
κ̄. (15)

This way, equations (12)-(13) become

n · (σ̄ · n) =
1

We
κ̄, (16)

m · (σ̄ · n) = 0, (17)

where
σ̄ = 2βD̄ + T̄−Re · p̄I, (18)

and We is the Weber number, given by

We =
ρU2L

γ
. (19)

From now on, the upper bars used for the non-dimensional variables will be dropped.

3 Overview of the numerical method

3.1 Projection method

In this work, the Navier-Stokes equations are solved numerically using the well-known projection method. In
summary, this method uses the Helmhotz-Hodge decomposition to decouple velocity and pressure from equations
(8)-(9).

The Helmhotz-Hodge decomposition [4] states that any vector field defined in a region Ω with smooth bound-
ary ∂Ω can be uniquely decomposed as

ũ = u +∇ψ, (20)

where u is a vector field such that∇ · u = 0 and ψ a scalar field also defined in Ω.
The first step in the projection method is to solve the momentum equation (8) for an intermediate velocity

field ũ. In order to decouple velocity and pressure, we approximate the unknown p by some known scalar field p̃.
The equation then becomes

∂ũ
∂t

+∇ · (ũũ) = −∇p̃+
β

Re
∇2ũ +

1

Re
∇ · T +

1

Fr2
g, (21)

where, for non-Newtonian flows, the tensor T is also assumed to be known.
Solving (21), we obtain a velocity field ũ for which, in general, the continuity equation is not yet satisfied.

Using the Helmhotz-Hodge decomposition (20) and the continuity equation (9) we can create a Poisson equation
for a scalar field ψ:

∇2ψ = ∇ · ũ. (22)

After solving equations (21) and (22) we have both ũ and ψ, such that the decomposition (20) can be used to obtain
the final velocity field u that also satisfies the continuity equation. More details on this numerical treatment of the
boundary conditions (16)-(17) can be seen in [1].

3.2 Discretization

The entire spatial domain is discretized using a uniform mesh, and the unknowns are evaluated on a staggered
grid (velocity components on cell faces, pressure and stress on cell centers).

On top of the fixed grid, there will be a moving Lagrangian mesh which tracks the fluid interface. This mesh
follows the classical Front-Tracking representation, which represents an interface using a number of connected
marker particles. These markers are moved every timestep according to the velocity calculated on the underlying
grid.

The cells on the fixed grid are classified according to their position with respect to the fluid interface. Each
cell is classified as one of three possible options:

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Numerical simulation of viscoelastic fluid flows with free surfaces

• EMPTY: a cell receives the EMPTY label if it does not contain any marker particles inside it and is located
outside the region with fluid;

• SURFACE: a cell that contains at least one marker particle and that borders an EMPTY cell;
• FULL: these cells do not have EMPTY cells around its four faces, that is, they are inside a region with fluid.

Figure 1 shows a grid example with all its cells classified according to the fluid location. The Front-Tracking
representation of the interface can also be seen through the connected marker particles.
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Figure 1. Example of cell classification in a free surface simulation.

The cell classification described above will determine which equations are solved in each of the grid points.
For points inside FULL cells, for example, the momentum and Poisson equations are solved normally. For points
inside EMPTY regions, nothing will be done, since there is no flow happening here. For points around SURFACE
cells, the free surface boundary conditions will be used.

In order to use the boundary conditions in eqs. (16)-(17), we also need a value for the local interface curvature.
The curvature is approximated by using the interface marker particles to fit a local parabola. The curvature of this
parabola can be calculated exactly and is used as an approximation for the interface.

4 Numerical results: binary droplet collision

Binary droplet collisions are of interest in many different applications such as raindrop formation, nuclear
fusion and various spraying processes according to Qian and Law [5]. Due to its complexity, this problem has
been studied in the literature for decades, but questions still remain open. Ashgrin and Poo [6], for example, carry
out experiments with water drops colliding in an air medium and the authors are able to capture three different types
of coalescence regimes. In [5] new experiments are performed using tetradecane droplets inside a nitrogen (gas)
medium. These authors were able to show that, unlike water, tetradecane droplets do not always coalesce after
impact, instead they can bounce away from each other. In general, three impact regimes are usually considered for
binary drop collisions:

• bouncing: the droplets collide and bounce away from each other without merging;
• total coalescence: the two droplets collide and permanently merge into one;
• separation: the droplets initially coalesce into one, which stretches heavily eventually breaking up again.
When it comes to numerical simulations, the problem of binary droplet collision is considered extremely com-

plex, mainly due to its topological changes. Methods that represent the interface purely implicitly, e.g. Volume-
of-Fluid, automatically join the two droplets when they get close to each other, resulting in coalescence [7]. This
implicit approach is used in the works of Li et al. and Nikolopoulos et al. [8, 9] among many others. On the other
hand, methods that describe the interface explicitly, e.g. Front-Tracking, never automatically join the two droplets,
which causes them to always bounce from each other. This approach has been used in [10, 11].

In this problem, both droplets are initialized with given velocities u1 and u2, respectively, and the initial
geometry can be defined by a single impact parameter B, given by

B =
b

D
, (23)
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where D is the diameter of the droplets and b is the center-to-center relative distance as illustrated in Figure 2.
Note thatB = 0 represents head-on impact, whileB = 1 indicates a grazing collision. The nondimensionalization
is performed using the diameter (D) and relative velocity (|ur|) as characteristic length and velocity, respectively.

Initial Droplet 1

Initial Droplet 2

Impact

Figure 2. Schematic of the geometry used in the binary droplet collision simulations.

In our study we are interested in investigating how elasticity can affect the behaviour in the droplet collisions.
Below we will show results for each of the three possible outcomes: bouncing, coalescence and separation. The
parameters used for each case are presented in table 1.

Table 1. Data used in the simulations

Case Velocity (m/s) Diameter (m) ρ (kg/m3) η0 (Pa · s) γ (N/m) Reynolds Weber

Bouncing 1.106 0.000375 998 0.0082 0.0458 50.48 10
Coalescence 1.916 0.000375 998 0.0082 0.0458 87.45 30
Separaton 2.473 0.000375 998 0.0082 0.0458 112.89 50

We begin by showing a simulation that falls into the bouncing regime. Figure 3 shows the side-by-side com-
parison between a Newtonian and a viscoelastic simulation for the bouncing case. We notice that the viscoelastic
droplets suffer a bigger deformation during impact. To illustrate this more clearly, Figure 4 shows the maximum
radius of one of the droplets over time. The viscoelastic droplet clearly deforms more at the momemnt of impact
and continues to oscillate for much longer than the Newtonian one, which quickly stabilizes into a circular shape.

We continue by investigating a case resulting in the coalescence regime. Figure 5 shows a comparison of time
frames between a Newtonian and a viscoelastic simulation in this case. Once again, we note that the viscoelastic
droplet deforms and stretches more than its Newtonian counterpart.

Finally, in Fig. 6 we also show a Newtonian-viscoelastic comparison for a simulation resulting in separation.
In this particular case, the effect of elasticity is so relevant that it even changes the final outcome of the simulation,
that is, while the Newtonian droplet separates, the viscoelastic one coalesces permanently.

5 Conclusions

The behaviour presented by small droplets during collision was studied in this work. In particular, we have
focused on showing the differences caused by the presence of elasticity in the droplet fluid. While the results
introduced here are still preliminary, we were already able to see that elasticity can have a very significant effect
on the flow dynamics, greatly modifying the droplet deformation.

We intend to continue this study by further investigating how elasticity can change the final collision outcome
(bouncing, coalescence, stretching), with the intent of creating a numerical method that can correctly predict the
correct outcome based on the viscoelastic fluid and flow parameters.
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Time: 0.00 Time: 4.20

Time: 1.35 Time: 5.10

Time: 3.00 Time: 9.15

Figure 3. Bouncing case. Parameters: Re = 50.48,We = 10 andB = 0.2. Red: Newtonian and Blue: Oldroyd-B
with Wi = 5, β = 1/9.

Figure 4. Max radius over time for a bouncing simulation.
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B with Wi = 5, β = 1/9.
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Figure 6. Separation case. Parameters: Re = 112.89, We = 50 and B = 0.5. Red: Newtonian and Blue:
Oldroyd-B with Wi = 3, β = 1/9.
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