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Abstract. Structural monitoring methods have been extensively researched in recent years due to developments 

in Artificial Intelligence (AI) technology. In this regard, the purpose of this work is to offer an automated data-

driven approach for deterioration localization based on the extraction of features from raw vibration data utilizing 

domain knowledge and a filtering procedure. To diversify information retrieval, feature extraction is conducted 

concurrently in temporal, frequency, and quefrency domains. This filtering process is known as feature selection 

(FS) and is used to reduce redundancies and raise the relevance of the feature set by removing a subset based on a 

predefined criterion. The key idea is that the proposed approach may be tuned to the structure while offering 

generality for whatever shape, material, or excitation it comes across. The deterioration index is calculated via 

outlier analysis referenced by the structure's healthy condition. The technique was successfully tested in a full-

scale bridge, demonstrating a performance that is encouraging for real-world monitoring scenarios. 
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1  Introduction 

The lifespan of a given structure relies on a variety of factors, including the weather, usage, design, and 

others which are difficult to predict and sometimes impracticable to evaluate. As a result, real-time Structural 

Health Monitoring (SHM) systems have drawn considerable attention from scientists in a variety of research areas, 

including civil, aerospace, and structural engineering. Recent developments in sensor technology tend to improve 

robustness and support ever-cheaper pricing for implementation in large-scale applications. This is a noteworthy 

accomplishment since the localization becomes more precise the more sensors are arranged on a certain building. 

Model-driven and data-driven are the two primary classifications of SHM. This first class entails developing 

a FE model of the structure, which is frequently related to a model updating procedure. The data-driven approach, 

on the other hand, employs vibration measurements (such as acceleration or displacement), frequently using 

feature extraction combined to a kind of pattern recognition approach. Data-driven methods generally provide a 

more useful solution for deterioration identification due to the computational model's complexity and the inevitable 

differences between the vibration attributes of the real building and the FE model. Thus, this research proposes a 

completely automated data-driven and multi-domain approach for localizing structural deterioration enhanced with 

an unsupervised feature selection technique. 

2  Multi-domain approach 

The effectiveness of the extraction step has a major impact on all feature-based techniques. Therefore, it 

becomes an attractive idea to divide the number of features into multiple domains, i.e., time, frequency, and 

quefrequency domains. This "multi-domain association" is expected to improve the feature set's representation of 

the dynamic responses (i.e., acceleration signals), as a structural change (e.g., in stiffness, due to local 

deterioration) might have an influence on all of these domains concurrently. 
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2.1 Time domain features 

To gather as much information and nuances about the vibration signals as possible, this paper uses a variety 

of statistics in time domain evaluated directly from the acceleration data. Typically, its computation has low 

complexity. In this study, 17 time domain features are extracted, these are listed in table 1. 

Table 1. Time domain features definition 

Feature Definition Feature Definition 

Peak (PE) 𝑌𝑃𝐸  = max(𝒚𝒊) Kurtosis (KU) 𝑌𝐾𝑈 =
∑ (𝒚𝒊 − 𝑌𝜇)

4𝑁
𝑖=1

(𝑁 − 1)𝑌𝜎
4  

Root-Mean-Square 

(RMS) 
𝑌𝑅𝑀𝑆 =  (

1

𝑁
∑𝒚𝒊

2

𝑁

𝑖=1

)

1

2

 

 

5th Moment 

(5th M) 
𝑌5𝑡ℎ𝑚 =

∑ (𝒚𝒊 − 𝑌𝜇)
𝟓𝑁

𝑖=1

(𝑁 − 1)𝑌𝜎
5  

Square-Mean-Root 

(SMR) 
𝑌𝑆𝑀𝑅 = (

1

𝑁
∑|𝒚𝒊|
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𝑁
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)
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6th Moment 

(6th M) 
𝑌6𝑡ℎ𝑚 =

∑ (𝒚𝒊 − 𝑌𝜇)
6𝑁

𝑖=1

(𝑁 − 1)𝑌𝜎
6  

Range (RG) 
𝑌𝑅𝐺  = max(𝒚𝒊) − min(𝒚𝒊) 

 

7th Moment 

(7th M) 
𝑌7𝑡ℎ𝑚 =

∑ (𝒚𝒊 − 𝑌𝜇)
7𝑁

𝑖=1

(𝑁 − 1)𝑌𝜎
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Mean (M) 𝑌𝑀 =
1

𝑁
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𝑁

𝑖=1

 
Shape Factor 

(SF) 
𝑌𝑆𝐹 =

𝑌𝑅𝑀𝑆

1

𝑁
∑ |𝒚𝒊|

𝑁
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Mean Square (MS) 𝑌𝑀𝑆 =
1

𝑁
∑𝒚𝒊

2

𝑁

𝑖=1

 
Crest Factor 

(CF) 
𝑌𝐶𝐹 =

max(|𝒚𝒊|)

𝑦𝑅𝑀𝑆

 

Variance (VAR) 𝑌𝜎2 =
1

𝑁 − 1
∑|𝒚𝒊 − 𝑌𝜇|

𝟐
𝑁

𝑖=1

 
Impulse 

Factor (IF) 
𝑌𝐼𝐹 =

max(|𝒚𝒊|)
1

𝑁
∑ |𝒚𝒊|

𝑁
𝑖=1

 

Standard deviation 

(SD) 
𝑌𝜎 = √𝑌𝜎2  

Latitude 

Factor (LF) 
𝑌𝐿𝐹 =

max(|𝒚𝒊|)

𝑌𝑆𝑀𝑅

 

Skewness (SK) 𝑌𝑆𝐾 =
∑ (𝒚𝒊 − 𝑌𝜇)

3𝑁
𝑖=1

(𝑁 − 1)𝑌𝜎
3    

2.2 Frequency domain features 

The proposed methodology aims to obtain valuable attributes from the frequency domain responses in 

addition to the time domain characteristics. Therefore, acceleration responses are used to calculate the well-known 

Power Spectral Densities (PSD). Being a commonly utilized tool in the field of signal processing, PSD are 

regularly used to represent the distribution of a signal over frequency. The work of Beskhyroun et al. [1] is 

suggested for a deeper knowledge of PSD applied to SHM tasks. 

Frequency-related features are retrieved from the already mentioned PSD via an analysis of the k 

highest peaks. The key hypothesis is that changes in the highest k peaks cause changes in the PSD, frequently 

associated with anomalous structural vibration behavior, hence indicating potential damage spots. A distance 

vector 𝑫 is calculated between succeeding peaks as follows in equation 1, where 𝑘 is an integer, and  ℎ𝑖 is the 

location of the 𝑖𝑡ℎ peak in the PSD (taking into account the ascending frequency order). 

 

𝑫 = [(ℎ2 − ℎ1), (ℎ3 − ℎ2), … , (ℎ𝑖−1 − ℎ𝑖), … , (ℎ𝑘 − ℎ𝑘−1)]
𝑇 = [𝑑1, 𝑑2, … , 𝑑𝑖 , … , 𝑑𝑘−1]

𝑇  
for 𝑖 = 1,2, … , 𝑘 − 1. 

 

(1) 

where 𝑑𝑖 is the Euclidean distance between the (𝑖 + 1)th and 𝑖th peaks. Thus, a vector 𝑫 of dimension (𝑘 − 1) is 

produced from a given set of 𝑘 peaks. 

As a result, five frequency-related properties are retrieved from 𝑫: mean, standard deviation, variation, 
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skewness, and kurtosis. This method is repeated twice to increase the amount of detail in the analysis. As shown 

in Alves and Cury [2], adjusting the parameter k to 6 and 8 yields optimal results. Finally, 10 frequency-related 

features are developed. Note that the same peak might be calculated numerous times due to its width, and closely 

spaced peaks can bias the result. To solve this problem, a minimum distance between the peaks of 50 points was 

considered. 

2.3 Quefrency domain features 

Mel-frequency cepstral coefficient (MFCC), which belongs to the quefrency domain, is added to complete 

the collection of features for the multi-domain approach. The initial use of cepstrum-based features with a focus 

on damage identification may be attributed to Zhang et al. [3], who developed noise cancellation and damage 

detection algorithms in concrete bridge decks. In that survey, MFCCs outperformed other examined features in 

terms of repeatability and separability. 

The steps below (Sahidullah and Saha [4]) illustrate how to compute the MFCC in brief: 

I. Windowing: A Hamming window is used to multiply the signal. 

II. Power spectrum computation: Construct the discrete Fourier transform (DFT) coefficients of a 

(windowed) signal, which are subsequently utilized to compute the power spectrum. 

III. Log energy filter bank: The power spectrum is processed through a triangle filter based on the 

Mel scale. 

IV. Discrete cosine transform (DCT): computing the DCT of the log Mel spectrum list 

V. Obtaining MFCC features. 

It is recommended to examine the literature (Sahidullah and Saha [4]) for a more in-depth look at the 

computations necessary. In this research, 9 features from the quefrency domain are employed. 

2.4 Feature selection (FS) 

It is clear that the proposed approach is dependent on the extracted features' ability to represent local changes 

in structural behavior caused by damage. To address the feature relevance problem, the Feature Selection (FS) 

technique is introduced. FS is becoming a must-have solution for managing projects with extensive and expanding 

databases (Big Data). This technique is excellent for removing unnecessary features and preventing overfitting. 

FS methods are frequently divided into three basic categories: filter, wrapper, and embedding. Filter-type 

approaches choose features devoid of any learning mechanism and independent of the classification model. 

Information-theoretic measures are used to examine the variables in this situation, and the best features are then 

picked while the least important ones are discarded. This category is used on the present study, because are known 

to be quick and unaffected by a specific classifier, which makes them ideal for implementing FS in real-world 

applications involving structural damage location. 

2.5 Unsupervised Infinite Feature Selection (Inf-FS
U
) 

The Inf-FSU is an unsupervised filter-type feature selection methodology. It entails treating feature subsets 

as a path in a fully connected graph, where nodes are features and edges assess the relationship between two linked 

nodes (features) in terms of relevance and redundancy metrics. The detailed computation process is demonstrated 

in study of Roffo et al. [5], which performed tests in numerous benchmark datasets and indicated that Inf-FSU  

outperformed several other well-known FS approaches. For the present research the set of selected features are 

determined by the top 80% (truncated form) regarding it scores. 

3  Methodology 

The 36 multi-domain features in this work are filtered applying Inf-FSU, leaving the top 28 ranked features 

to evaluate the deterioration index. Notice that each sensor has its own ranking. The outlier identification system 

employed in this research is based on Alves and Cury [2]. 
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3.1 Percentile intervals 

Percentiles can be used to divide a sample frequency distribution into two sections. In essence, the percentile 

𝑃𝑘 is a number that 𝑘 percent of all samples fall below it, where 0 < 𝑘 ≤ 100. The most common are the first 

quartile, median, and third quartile, which correspond to 𝑃25, 𝑃50, and 𝑃75, respectively. It is worth noting that the 

interquartile range in given by (𝑃75 − 𝑃25). The percentile measure was chosen because it is unaffected by outliers. 

It is a powerful metric as it tends to eliminate noise influence in the signal induced by environmental fluctuations 

(e.g., temperature and wind velocity) or vehicle traffic. 

The percentile interval, [𝑃𝐿 , 𝑃𝑈], is defined as a criterion to represent the structure's healthy behavior trend 

in the present work. In fact, for a set interval of extreme pairings 𝑃𝐿  and 𝑃𝑈, the likelihood of finding a particular 

sample within it is (𝑈 − 𝐿)%. For the sake of an automated technique, an interval of 85% is employed as the 

baseline, which means that for all tests analyzed, the interval [𝑃7.5 , 𝑃92.5] was selected based on the healthy data. 

This parameter is evaluated in line with prior research (Alves and Cury [2]), where experiments on various 

intervals revealed that a little modification (~5%) does not significantly influence the outcomes. 

3.2 Deterioration index 

As already mentioned, the percentile intervals are obtained using the healthy state features 𝐹ℎ. Therefore, 

the deterioration index is calculated for each sensor (i.e., accelerometer) based on the number of features in the 

damaged state 𝐹𝑑 that are beyond its range [𝑃𝐿 , 𝑃𝑈]. For a particular sensor, it is essential to partition its whole 

signal into 𝑁 samples; hence, after extracting the features, there is a distribution of samples of the same feature to 

offer the creation of its interval and subsequent outlier analysis. In matrix notation, features, i.e., 𝐹ℎ and 𝐹𝑑, are 

described as: 

 

𝐹ℎ = [𝑓1
ℎ , 𝑓2

ℎ , … , 𝑓𝑖
ℎ , … , 𝑓𝑠

ℎ] and 𝐹𝑑 = [𝑓1
𝑑 , 𝑓2

𝑑 , … , 𝑓𝑖
𝑑 , … , 𝑓𝑠

𝑑], for 𝑖 = 1, 2, … , 𝑠. 

 

(2) 

where 𝑠 is the total number of sensors mounted along the construction, and where the definitions of the matrices 

𝒇𝒊
𝒉 and 𝒇𝒊

𝒅 are: 

 

𝒇𝒊
𝒉 =

[
 
 
 
 
 
𝑔1,1

ℎ ⋯ 𝑔1,𝑗
ℎ

⋮ ⋱ ⋮

𝑔𝑛,1
ℎ

⋮
𝑔𝑁,1

ℎ

⋯
⋱
⋯

𝑔𝑛,𝑗
ℎ

⋮
𝑔𝑁,𝑗

ℎ

   

⋯
⋱

⋯
⋱
⋯

    

𝑔1,𝑛𝑓
ℎ

⋮
𝑔𝑛,𝑛𝑓

ℎ

⋮
𝑔𝑁,𝑛𝑓

ℎ
]
 
 
 
 
 

 and  𝒇𝒊
𝒅 =

[
 
 
 
 
 
𝑔1,1

𝑑 ⋯ 𝑔1,𝑗
𝑑

⋮ ⋱ ⋮

𝑔𝑛,1
𝑑

⋮
𝑔𝑁,1

𝑑

⋯
⋱
⋯

𝑔𝑛,𝑗
𝑑

⋮
𝑔𝑁,𝑗

𝑑

   

⋯
⋱

⋯
⋱
⋯

    

𝑔1,𝑛𝑓
𝑑

⋮
𝑔𝑛,𝑛𝑓

𝑑

⋮
𝑔𝑁,𝑛𝑓

𝑑
]
 
 
 
 
 

 

for j = 1, 2, 3, … , 𝑛𝑓 and 𝑛 = 1, 2, 3, … , 𝑁. 
 

(3) 

where 𝑛𝑓 is the total number of features extracted from each signal sample (36 features for this work), and 𝑔𝑛,𝑗 is 

a generic variable representing a feature 𝑗 of a signal sample 𝑛. As a result, 𝐹ℎ is used to calculate the standard 

healthy interval for each feature 𝑗, that is also detailed in the previous section. An auxiliary counter matrix 𝑨𝑪 is 

initialized with zero-valued components. Its goal is to determine the number of outliers for each feature 𝑗 and 

sensor 𝑖 considering their corresponding healthy intervals. 

 

𝑨𝑪 =

[
 
 
 
 
𝑎𝑐1,1

 ⋯ 𝑎𝑐1,𝑖
 

⋮ ⋱ ⋮
𝑎𝑐𝑗,1

 

⋮
𝑎𝑐𝑛𝑓,1

 

⋯

⋯

𝑎𝑐𝑗,𝑖
 

⋮
𝑎𝑐𝑛𝑓,𝑖

 

   

⋯

⋯
⋱
⋯

    

𝑎𝑐1,𝑠
 

⋮
𝑎𝑐𝑗,𝑠

 

⋮
𝑎𝑐𝑛𝑓,𝑠

 
]
 
 
 
 

 

 

(4) 

The 𝑨𝑪 counter matrix is updated interactively. A normalization procedure is used to ensure that all features 

have the same potential to influence the output. Finally, the proposed deterioration index 𝐷𝐼𝑖 is determined by Eq. 

5. 

𝐷𝐼𝑖 = ∑ 𝑎𝑐𝑗,𝑖  , for 𝑖 = 1, … , 𝑠.

𝑛𝑓

𝑗=1

 

 

(5) 
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4  Application: Z24 bridge 

The Z24 bridge was constructed in 1963 in the canton of Bern, near Solothurn, Switzerland. It connected the 

communities of Koppigen and Utzenstorf by crossing the A1 motorway, which links Bern to Zurich (Figure 1(a)). 

The building geometric dimensions are illustrated in Figure 1(b). Progressive damage studies were carried out 

before the building was set to be demolished in late 1998. The tests, which lasted a month, were designed to 

simulate real bridge deterioration for scientific objectives (Wahab and De Roeck [6]). Nonetheless, some sensors, 

notably those on the Bern side span, were found to be defective given the existence of an abnormal shift in the 

offset of the signal, which are being disregarded for this work. 

To recreate genuine damage on Z24, the pier on side Koppigen was cut and rebuilt with steel fill plates and 

three hydraulic jacks (Wahab and De Roeck [6]). This installed mechanism can lower the pier to replicate real-

world damage sources such as subsurface settlement and erosion. The period following the installation of the 

lowering system is used as a baseline for the healthy condition. Four different damage scenarios are being 

investigated: (I) 20 mm settlement; (II) 80 mm settlement; (III) 95 mm settlement; (IV) pier lifting and foundation 

tilt. Note that both temperature and wind conditions on this full-scale bridge fluctuate over time, allowing the 

assessment of the proposed method's robustness to noise. 

Figure 1. Z24 Bridge: (a), Global view; (b) Elevation. (adapted from Wahab and De Roeck [6]) 

4.1 Results 

Reynders and De Roeck [7] asserts that the loss of local stiffness in this area was caused by fractures 

appearing at the midspan in an area 6.6 m from the Koppigen pier because of the forced settlements. Therefore, 

the Koppigen pier neighborhood should be identified as the true damage site. The spatial localization is shown in 

Fig. 2. For negative indices, the color is set to green; for positive indices, it ranges from green (𝐷𝐼𝑖 = 0) to red 

(maximum 𝐷𝐼𝑖). Other colors are assigned in proportion to the proposed deterioration index magnitude (e.g., 

yellow, orange, etc.). The greatest deterioration indices in red (Fig. 2) demonstrate that the approach can locate 

the damage in the actual spot in all four damage situations.  

Sensors located to the right of the Utzenstorf pier (about 5 meters towards Koppingen) show low positive 

indices (as indicated by the weak positive indexes in scenarios I, II, and III in Fig. 2(a-c)). This settlement might 

have bent the bridge span along that pier and caused minor cracks in that area. The assessment of the condition of 

elevating the pier to its original height followed by foundation tilt supports this theory (i.e., scenario IV). Such 

lifting tends to close fractures on the bridge span, increasing stiffness to the section in which the technique no 

more identifies positive index in that area. This event demonstrates the great potential of the methodology in 

recognizing structural reinforcement. 
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Figure 2. Z24 bridge - Spatial visualization: (a) Scenario I; (b) Scenario II; (c) Scenario III; (d) Scenario IV.
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5  Conclusions 

The automated technique produced promising outcomes on locating deterioration in all scenarios tested for 

the Z24 bridge. The employed feature selection (FS) strategy demonstrated to be an effective noise filtering 

procedure. Changes in ambient factors (e.g., wind and temperature) were noticed in the full-scale bridge 

experiment and did not interfere with the final damage localization assessment. This robustness is associated to 

the unsupervised FS to some degree. During a specific scenario, the approach identified structural reinforcement 

based on stiffness gain due to crack closure. This was directly reflected in the reduction in damage indexes in the 

reinforced zone. Hence, this paper proposes a significant accomplishment in validating the features' sensitivity to 

structural deterioration. 
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