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Abstract. The compressive strength (Rc) of concrete is an important feature that influences the safety, durability, 

and cost of a structure. To achieve the desired Rc, professionals generally use mix design methods based on empirical 

tables. Then, the Rc must be confirmed in laboratory with tests that cost time and resources. To mitigate this issue, 

this study proposes and compares the use of four Machine Learning (ML) techniques to predict the Rc of concretes 

from their components. The techniques are: Extreme Gradient Boosting, Support Vector Regression, Artificial Neural 

Networks, and Gaussian Process Regression. Initially, a dataset vastly used in the literature for this purpose was used 

as input. Secondly, a dataset built by the authors was used to validate the models’ generalization ability. All models 

were cross-validated (10-fold) and their accuracies were measured by R², MAE, and RMSE. XGBoost and GPR 

presented the best performance, while SVR presented the worst. Despite the positive performances measured in all 

models with the first dataset, the metrics dropped sharply in the validation step involving the second dataset. Thus, 

the ML techniques are promising tools for the mix design of concretes, but attention must be taken to guarantee that 

models are not overfitted because of the homogeneity of the input data. 
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1  Introduction 

The bearing capacity, durability, and cost of any concrete structure depend on the quality of the concrete 

used. In this sense, the compressive strength of concrete, usually denoted by Rc, is one of its most important 

properties, defined with safety margins since the design process. In this sense, the engineer, having the required 

Rc value, portions the ingredients of the concrete in order to guarantee the desired strength. The traditional mix 

design methods (e.g., ACI, ABCO, IPT etc.) are based on empirical tables and formulations that must be confirmed 

in laboratory, with specimens at 28 days of curing (normally), in a procedure that follows local standards. This 

iterative process demands a high expenditure of human labour, natural resources, and time. 

In this scenario, the Machine Learning (ML) techniques are a promising solution to efficiently predict the 

behaviour of concrete. ML models can predict future results based on patterns that are learned autonomously from a 

database of previous results. As an example, Hoang et al. [1] employed the Gaussian Process Regression (GPR) to 

predict the Rc of concrete using a dataset of 246 mixtures in Vietnam, obtaining a coefficient of determination (R²) 

of 0,90. Various other studies [2, 3, 4] have used different ML models to predict the Rc of concretes using a well-
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known concrete mixture dataset assembled by Yeh [5]. Dao et al. [2] tested the accuracy of Artificial Neural Networks 

(ANN) and GPR to Yeh’s dataset, in a 70/30 train/test simple separation, obtaining an R² of 0.89 with the GPR. 

Mustapha & Mohamed [4], also using Yeh’s [5] dataset without cross-validation, obtained an R² of 0.93 by applying 

the Support Vector Regression (SVR). Cui et al. [3] used a decision tree model for this same dataset, obtaining R² 

above 0.80. All these authors agree on the potential of ML techniques to predict the Rc of concrete. However, most 

of the entries in Yeh’s dataset originated from research carried out between 1987 and 1997 in Taiwan. 

In this sense, the present work compares four extensively used ML techniques to predict the Rc of concrete: 

Extreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), Artificial Neural Networks (ANN), 

and Gaussian Process Regression (GPR). We also built a new dataset, with mixtures from all over the world, to 

validate the models trained with the traditional Yeh’s dataset, seeking to interpret their generalization ability. We 

seek to find the most appropriate technique, among these four ones, to use in future predictions, and we aim to 

show the limitations of employing ML models to concrete mix design in diverse contexts. 

2  Methodology 

After a preliminary literature analysis, XGBoost, SVR, ANN, and GPR were found as the supervised ML 

techniques that showed the most promising performance when predicting concrete properties, while maintaining 

different learning-based backgrounds. After selecting these techniques, this study was split in two stages. In the 

first stage, the models were developed and cross-validated with Yeh’s dataset [5] to extract the relationships from 

the concrete ingredients and predict their Rc (the target variable), expressed in MPa. The input features for each 

model were the proportions (expressed in kg/m³) of cement, blast furnace slag, fly ash, water, superplasticizer, 

coarse aggregates, and fine aggregates. 

Yeh’s dataset is called  “Concrete Compressive Strength Data Set” and contains 1030 entries ranging from 

2 to 82 MPa [5]. It is publicly available in the literature and is vastly used for prediction purposes. Beyond the 

previously cited features, this dataset has the age of the hydration of the concretes, which was not used in the 

present work. We only selected the observations with 28 days and between 15 - 50 MPa since these age and 

strength range are conventionally used for normal-strength concretes in buildings [6]. After these pre-processing 

steps, in total, 329 observations were used as input in the models (68% of the original size). 

In the second step, these models were trained with the reduced Yeh’s dataset and validated with another 

dataset built by the authors with 22 entries from 11 sources. This new database comprises mixtures between 15 - 

50 MPa from 8 different countries, collected from articles published from 2009 to 2019. Since not all specimens 

had not the same geometry, they were converted to 150×300mm cylindrical specimens according to the 

correlations described by Yi et al. [8]. The overview of both datasets after pre-processing is shown in Table 1. 

Table 1. Overview of the two pre-processed datasets with the Rc expressed in MPa and the other parameters 

in kg/m³ 

 Yeh’s dataset   Validation dataset 

# Instances 329  22 

Parameter Min Max Mean Std. Dev.  Min Max Mean Std. Dev. 

Portland cement 102.00 516.00 242.66 87.72  220.0 568.8 379.8 90.4 

Blast furnace slag 0.00 359.40 89.68 89.50  0.0 410.5 81.0 112.7 

Flay ash 0.00 200.10 64.73 65.82  0.0 25.0 4.5 9.9 

Water 121.80 247.00 186.72 17.69  138.0 250.3 204.9 28.8 

Superplasticizer 0.00 22.10 6.18 5.03  0.0 11.3 2.0 3.2 

Coarse aggregate 801.00 1145.00 958.13 80.68  656.3 1029.0 879.2 126.9 

Fine aggregate 594.00 945.00 763.81 70.91  477.7 1029.3 802.4 155.7 

Rc 15.09 49.90 32.36 8.52  19.6 40.3 33.5 6.0 

 

As shown in Table 1, the features have different scales, which can lead some models to prioritize a given input 

because of its higher value. Thus, we rescaled the input features, assuming the data is normally distributed within 

each feature and scaling the values so that the distribution centered around 0, with a deviation equal to 1. In the two 

stages, we used the k-fold cross-validation, with k=10, according to other studies with the similar problem [1].  
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The ML models were implemented in Python, using TensorFlow, Scikit-learn, and XGBoost libraries. We 

also used the Pandas library to assess and manipulate the database. The authors manually adjusted the 

hyperparameters of the techniques, avoiding focusing on specific optimization methods for each one. More 

information in these adjustments can be found in [7].  

To measure these models’ ability of prediction, the coefficient of determination (R²), the mean absolute error 

(MAE), and the root mean square error (RMSE) metrics were used. These metrics is commonly used in regression 

models for this type of problem [9, 10, 11].  

The R² ranges from -∞ to 1. When the model has good accuracy, the R² tends to 1. Regarding MAE, it 

measures the average of the absolute deviations between the predicted and the observed results, i.e., the magnitude 

of the errors. Lastly, RMSE is similar to MAE, but in a quadratic approach. Therefore, when the error of a given 

prediction increases, the RMSE increases considerably. Both MAE and RMSE range from 0 to +∞ and lower 

values indicate better predictions. 

 

3  Results 

Table 2 presents the results of the models in the two stages of this project. 

Table 2. Metrics of the four implemented models: Extreme Gradient Boosting (XGBoost), Support Vector 

Regression (SVR), Artificial Neural Networks (ANN), and Gaussian Process Regression (GPR). 

 
Stage 1: models trained and tested with 

Yeh’s dataset 

 Stage 2: models trained with Yeh’s dataset 

and validated with the new global dataset 

Model R² RMSE 
(MPa) 

MAE 
(MPa) 

Max. 
abs. 
error 

(MPa) 

Min. 
abs. 
error 

(MPa) 

 R² RMSE 
(MPa) 

MAE 
(MPa) 

Max. 
abs. 
error 

(MPa) 

Min. 
abs. 
error 

(MPa) 

XGBoost 0.83 3.41 2.24 18.78 0.00  0.42 4.46 3.57 9.75 0.26 

SVR 0.79 3.73 2.26 19.90 0.00  0.37 4.67 4.04 9.22 0.67 

ANN 0.82 3.40 2.26 23.79 0.01  0.51 4.09 3.23 9.75 0.13 

GPR 0.82 3.43 1.96 21.12 0.00  0.59 3.75 3.04 8.40 0.07 

 

3.1 Discussion of Stage 1: models trained and tested with Yeh’s dataset 

In the first stage, the R² of all models ranged around 0.80. This indicates a good correlation between the 

predicted and observed values, given the relatively small dataset and the knowingly complicated relationship 

among the concrete components. The XGBoost was the best technique, with R² = 0.83, with SVR presenting the 

worst performance R² = 0.79, although still close to the other models. Regarding MAE and RMSE metrics, the 

XGBoost and ANN models obtained very similar results, around 2.24 MPa and 3.40 MPa, respectively. As 

observed for the R², the SVR presented the worst results, MAE of 2.26 MPa and RMSE of 3.73 MPa. 

In comparison with the literature, the best R² obtained in this study was lower than that of other authors that 

also used the Yeh’s dataset. Using GPR and ANN tools, Dao et al. [2] reached R² = 0.89, for instance. Part of this 

reason relies on the fact that these authors did not pre-process the dataset. They used the entire dataset as inputs, with 

all strength values and curing ages, meaning that they had many more instances to train the algorithms. Additionally, 

it is known that the scale of the variation of Rc at early ages is usually much lower than that at 28 days. This can 

indicate that some ML models that test all ages have their metrics artificially boosted by lower deviations. Mustapha 

and Mohamed [4] obtained a higher R² (0,93) using SVR, but they also used all ages and did not cross-validate the 

model. It is well-known that simple separations into train/test groups can lead to bias in prediction problems. 

In turn, Lam et al. [12] developed a model from their own experimentally built specimens. Using ANN, they 

achieved R² = 0.92. However, this approach can limit the generalization ability of the model since the algorithms 

only learn from a homogeneous source of concrete. Hoang et al. [1] also created their own dataset with 246 

instances and achieved a RMSE of 4.04 MPa (higher than the values obtained by us). 
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Regarding the minimum absolute error obtained in the models, their values are equal to 0 or very close to it. 

This is expected to a good prediction model. However, the values of the maximum absolute results ranged close 

to 20 MPa, even with the dataset limited to 50 MPa, so care must be taken when using ML for mix design purposes. 

Analyzing the frequency of errors for the 329 instances, at least 83.6% of the those fell below 5 MPa (value 

regarding SVR), reaching up to 91.2% for ANN (Table 3). In all models, less than 3% of the predictions deviated 

more than 10 MPa from the real values. 

Table 3. Frequency of errors deviation values for the Yeh’s dataset 

Error deviation SVR GRP XGBoost ANN 

<5 MPa 83.6% 85.7% 85.1% 91.2% 

5-10 MPa 13.4% 11.2% 13.4% 7.0% 

>10 MPa 3.0% 3.0% 1.5% 1.8% 

 

In a comparative analysis among the instances of the Yeh’s dataset pre-processed, it was noted that the 

instances that lead to a high absolute error refers to the concrete with unconventional proportions of materials. For 

instance, there were some observations with only 200 kg/m³ of Portland cement reaching 49.25MPa and others 

with more than 30% of mineral admixtures in relation to cement mass. This fact indicates the need to have a vast 

observation set of concrete mixes of all type to create tools that are as generalizable as possible. 

3.2 Stage 2: models trained with Yeh’s dataset and validated with the new global dataset 

The generalization ability of the models was tested using the Yeh’s dataset pre-processed as a training input 

and the dataset built by us the validation one. Their accuracy obtained in the models is dropped sharply, as show 

in Table 2. The R² felt from about 0.80 in stage 1 to 0.36 - 0.59 in this new validation. Regarding RMSE and MAE, 

the values rose as well. These results indicate that the models were not able to extrapolate the correlations learned 

from the Yeh’s dataset to new concrete mixes. 

One of the reasons behind this poor generalization ability is that the Yeh’s dataset [5] comprises relatively 

old studies (1987 – 1997), while our new dataset started from 2009. Over the last few years, the technology of 

construction materials has greatly improved, especially for Portland cement and chemical admixtures. 

Furthermore, the Yeh’s datset mostly comprises studies carried out in Taiwan and with maximum coarse aggregate 

size of 20mm, which makes the dataset homogeneous in concern with the materials’ properties. The regional 

specificities of concrete ingredients are significant to the Rc value. For instance, in Brazil, Portland cement made 

in the Southern region generally incorporates pozzolanic admixtures, meanwhile, in the Southeast region, blast 

furnace slag is more adopted [13]. 

In this scenario, the excellent results found in the literature with the application of ML for concrete mix 

design using Yeh’s dataset or other homogeneous datasets can be misleading. Further studies are necessary to 

measure the impact of regional specificities on the ML models. 

4  Conclusion 

The present work developed and compared models with four different ML tools (XGBoost, SVR, ANN, and 

GPR) to predict the Rc of concretes. Initially, we trained the models and assessed their fitness through cross-

validation (k-fold) using the well-known Yeh’s dataset, available in the literature [5]. Next, we used the Yeh’s 

dataset as training input and validated the models with a new set of concrete mixtures collected all over the world. 

In the first stage, the models obtained promising results, with R² around 0.80. The XGBoost model presented 

the best performance, while the SVR presented the worst. Better correlations have been found by other authors, 

but they did not limit their datasets to 28 days nor used cross-validation. 

In the second stage, the GPR was the best predictor of the Rc, while SVR was again the worst. The quality 

of the prediction from all models dropped significantly when they were validated with the new global dataset. This 

is due to the differences between the datasets. The training dataset (Yeh’s) comprised concretes developed at least 

10 years prior to the testing dataset, originated from the same country (in majority), and with small aggregate sizes. 
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The testing dataset had none of these limitations. As result, the correlations developed by the ML models from 

Yeh’s dataset were not representative when applied to a much more heterogeneous set of mixtures. 

We can conclude that the regionality and period of the dataset strongly influence ML models aimed at 

predicting the Rc. This fact must be factored in the search for a universal concrete mix design tool. Thus, we 

propose that more studies are carried out to understand and quantify this phenomenon.  

Among the different ML models evaluated, XGBoost and GPR presented the best performance, while SVR 

presented the worst. This is not an ultimate result – the authors recommend that these techniques are applied to a 

larger and more varied dataset in order to verify if the dataset’s particularities influence the prediction quality of 

each technique. In closing, this work showed that ML is a promising tool to predict the Rc of concrete, although, 

at the moment, it should be limited to concrete specimens with similar characteristics. 
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