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Abstract. The study of fracture in quasi-brittle materials such as concrete has significant importance since it is
one of the main causes of material failure. There are two numerical approaches to representing fracture: smeared
and discrete models, and both techniques have pros and cons. Among the smeared approaches, damage models
are used to reproduce the degradation of a continuum media. These models are appropriate for describing the first
stages of degradation, identifying damaged regions, and replacing original mechanical properties with damaged
ones. This strategy assumes that the cracks are spread over an area known as the fracture process zone. How-
ever, this phenomenological approach cannot represent the crack path properly since the discontinuities are not
geometrically described. In contrast, the discrete methods are the most indicated to characterize the fracture ex-
plicitly. Such methods frequently deal with remeshing, an alternative that has been avoided because of the high
computational cost. Although, based on the efficiency of modern computers, it is now possible to evaluate the
viability of coupling continuous and discontinuous models to reproduce fracture in its entirety, from nucleation to
collapse. In this context, it is proposed a combined strategy that associates nonlocal damage models to represent
the smeared aspects of crack propagation with a discrete crack description based on nodal duplication to capture
the crack discontinuity. Finally, numerical simulations were performed to analyze the efficiency of this strategy in
representing the degradation processes from smeared cracks to geometric discontinuities.
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1 Introduction

The prediction of a material collapse is a relevant subject in Engineering. Among the materials adopted in
civil construction, the fracture is one of the most common failure modes. To prevent such phenomenon and its
consequences, at the beginning of the sec. XX engineers and researchers realized that classical mechanics was
not enough to describe the behavior of the quasi-brittle material like concrete. To fulfill this demand, the Fracture
Mechanics emerged to study the transition between the continuum and the discrete behavior according to the
material degradation (Gopalaratnam et al. [1]).

In order to represent the structural behavior of concrete, Griffith [2] was the pioneer with the Linear Elastic
Fracture Mechanic (LEFM). One of the firsts to apply this theory in analyses using the Finite Element Method
(FEM) were Ngo and Scordelis [3] and Nilson [4], using the process of crack propagation based on nodal dupli-
cation. Besides the simplicity, the discrete methods have been avoided because of the high computational cost of
remeshing.

As an alternative, the smeared crack methods appeared with Rashid [5]. This author presents a new way
to reproduce degradation, treating the media as a continuum while changes in the mechanical properties of the
material represent the crack effects. Another theory that evaluates the degradation as a continuum phenomenon is
the Continuum Damage Mechanics (CDM). Initially proposed by Kachanov [6], the CDM quantifies defects and
voids using damage variables. Although widely used, smeared models present strain-localization problems as a
limiting factor. In this scenario, nonlocal approaches have been developed to overcome such restrictions.

However, it is necessary to associate the smeared and the discrete strategies to represent the fracture process
in total, from the initial cracks nucleation to structural collapse. The smeared models are adequate to reproduce the
first levels of degradation when the microcracks are dominating. On the other hand, the discrete models are better
models to represent macroscopic defects once the geometry discontinuities are explicitly represented. Nowadays,
with more powerful computers, it is possible to analyze the viability of associating both theories. Based on this
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requirement, the present paper proposes an associate model that couples a nonlocal damage model with the nodal
duplication strategy, aiming to represent the whole process of fracture.

2 Nonlocal damage model

The volumetric damage model proposed by Penna [7] was chosen to represent the initial stage of fracture.
This model adopts different load functions to regions of tensile and compression, separating the volumetric and
the deviatoric parcels of strain tensor ε.

The local equivalent strains measures for tensile and compression are given, respectively, by

tr+ε = ε̄vt =
trε+ |trε|

2
; tr−ε = ε̄vc =

trε− |trε|
2

. (1)

Then, the secant constitutive relation is written as

Es = 2µ
∂e
∂ε

+
[
K+ [H(trε)]2 +K− [H(−trε)]2

]
I⊗ I, (2)

where
µ = µ0(1−Dv

t )(1−Dv
c ); K+ = K0(1−Dv

t ); K− = K0(1−Dv
c ). (3)

K0 is the volumetric modulus, written as K0 = E0

3(1−2ν) ;H(x) represents the Heavyside function, withH(x) = 1

para x > 0 and H(x) = 0 para x < 0; e is the deviatoric strain tensor; I is the identity tensor; µ0 is the shear
modulus; Dv

t is the tensile damage; Dv
c is the compressive damage.

The nonlocal strategy adopted to avoid localization problems is the integral formulation proposed by Jirásek
[8]. The local strain measure (eq. (1)) is replaced by a nonlocal variable

ϵ̄k =

NPG∑
l=1

(wlJlαklϵl) , (4)

where wl is the weight attributed to the Gauss point l, Jl is the Jacobian of the finite element in this point, and αkl

is the weight of the interaction between the points k and l. NPG indicates the total number of Gauss points of the
model. It is essential to highlight that αkl is not null only for points whose distance is equal to or smaller than the
nonlocal ratio ℓ (eq. (5)).

αkl =
α0 ∥xk − xl∥∑NPG

m=1 (wmJmα0 (∥xk − xm∥))
. (5)

The variable α0 indicates the distribution function of the nonlocal domain. In the present work, the Gaussian
function is adopted (eq. (6)), where k is responsible for the function shape.

α(x) = exp

(
−kx

2

ℓ2

)
. (6)

3 Nodal duplication model

A nodal duplication algorithm was developed to deal with remeshing without many interventions in the orig-
inal mes. Such methodology is less computationally onerous than the ones that are based on adaptive refinement.

An algorithm was created to go through all the model nodes, evaluating the tensile damage in which node.
Once the tensile damage variable reaches a crack limit previously defined, the nodal duplication algorithm is
triggered.

The nodal duplication creates a copy of the original node and updates the incidence of the elements which
contain the original node. Using the local crack system as a reference, the elements on the left of the original node
do not have their incidence changed, while the elements on the right have the original node replaced by its copy.
Then, the geometric discontinuity is inserted into the mesh (Fig. 1). The crack local system definition is based on
tracking the maximum damage value in the nodes connected with the duplicated node.

The element erosion is an strategy that remove elements that do not contribute to the model stiffness from the
original mesh because they present a tensile degradation bigger than the maximum accepted. Such strategy was
also implemented as an optional resource of the nodal duplication process.

This whole procedure is summarized in the code of algorithm 1.
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that will contain the copied node 
are determined.

1 – Defining the node with damage 
upper to the nodal duplication limit; 
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4 – Nodal duplication – the 
explicit crack is inserted.

Figure 1. Nodal duplication process.

Algorithm 1 Nodal duplication.

Require: D; E; Model ▷ D - duplication limit; E - erosion limit
Ensure: Updated mesh

i = 1
while i ≤ nºElements do ▷ Loop: elements list

elmi ▷ Current element
Di ▷ Damage average in elmi

if Di ≥ E then
element remotion ▷ Remove elements without stiffness

end if
i← i+ 1

end while
j = 1
while j ≤ nºNodes do ▷ Loop: node list

nodej ▷ Current node
if NodeRestrictionj == false then ▷ Evaluate if the nodej is restrained

if Dj ≥ D then
l = 1
while l ≤ nºElmCloud do ▷ Loop: element cloud of a nodej

elml ▷ Current element connected to nodej
NodeDmax ▷ Node into the cloud with the major value of damage
θ ▷ Local system (LS) angle
if xelml > xnodej then ▷ Analyze if elml is on the right of nodej in LS

node’j ▷ New node: copy of nodej
IncidenceElml ▷ Replace nodej by node’j

end if
l← l + 1

end while
end if

end if
j ← j + 1

end while
Update the node list

4 Numerical simulations

The proposed model has been implemented in the INteractive Structural ANalysis Environment (INSANE).
The INSANE is an open-source code developed at the Department of Structural Engineering of the Federal Uni-
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versity of Minas Gerais (https://www.insane.dees.ufmg.br/en/home/). Four numerical simulations
were performed to analyze the response of the continuous-discontinuous model using the L-shaped panel experi-
mentally tested by Winkler et al. [9, 10] as a reference. The geometry of this structure and the crack pattern found
by Winkler are represented in Fig. 2. Two different meshes were adopted to study the mesh sensitivity of the nodal
duplication process(Fig. 3). The first one is composed of 4-node quadrilateral finite elements, and the second is
composed of 6-node triangular finite elements and a higher level of refinement.

The tests performed by Winkler et al. [9, 10] provide the material parameters: E0 = 25850(±1381) N/mm2,
ft = 2.7 N/mm2, fc = 31.0 N/mm2, Gc = 0.065 N/mm and ν = 0.18. For a better representation of the
experimental curve, the numerical simulations of this current section use the minimum Young modulus verified
by Winkler, given as E0 = 24469 N/mm2. The concrete adopted in the experiments was made with a coarse
aggregate with the maximum diameter of dmax = 8 mm. Considering the characteristic length of the material
between 3× dmax and 5× dmax, it was determined as h = 28mm.

The selected constitutive model was the nonlocal volumetric damage model with a polynomial damage law.
The parameters were determined based on the parametrization presented by Penna [7], whose values are specified
in Table 1. The Gaussian weight function (eq. (6)) was applied, with the local ratio of ℓ = 12 mm, and the constant
k = 1.0.

For the solution process was adopted the direct displacement control method proposed by Batoz and Dhat
[11] and secant equilibrium. The vertical displacement of the node highlighted in Fig. 2 was controlled, using the
increment of 0.001 mm and convergence tolerance in the displacement of 1, 0× 10−4.
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Figure 2. L-shaped panel: geometry and experimental crack pattern (Adapted from Winkler et al. [10]).
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Figure 3. L-shaped panel: proposed meshes.
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Table 1. Polynomial damage law parameters

Tensile Compression

fe = 1.43 N/mm2 fe = 16.0 N/mm2

κ0 = 0.000215 κ0 = 0.0022

Ẽ = 13463.0 N/mm2 Ẽ = 13463.0 N/mm2

4.1 First analysis: nodal duplication

The first analysis evaluates how the continuous-discontinuous model performs when only the nodal duplica-
tion is activated, without element erosion. The damage crack limit was defined as D = 0.9. As shown in Fig. 4,
when the degradation starts to assume significant values, the numerical results diverge from the experimental curve.
It is possible to verify a stiffening in the softening branch of both meshes. This response can be explained by the
deformed shape of the panel, illustrated in Fig. 5, where a group of elements intercept the crack propagation path
and deviate the crack in a different direction from the one observed experimentally.
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Figure 4. L-shaped panel: nodal duplication with crack limit D = 0.9.

Figure 5. Deformed configuration - crack limit D = 0.9 without erosion.

4.2 Second analysis: element erosion

The element erosion was introduced in the analyses to remove the elements with a high level of degradation,
using the whole code presented in algorithm 1. In this case, the erosion limit was established as E = D = 0.9.
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Fig. 6, Fig. 7, and Fig. 8 represent the improvements related to the element erosion. The stiffening in the softening
branch was corrected, and so the crack propagation path.
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Figure 6. L-shaped panel: nodal duplication with crack limit and erosion limit D = E = 0.9.

Figure 7. Deformed configuration - crack and erosion limits D = E = 0.9.

Figure 8. Damage distribution - crack and erosion limits D = E = 0.9.

It is necessary to highlight that the agreement between the experimental curve and the numerical simulation
in Fig. 6 is limited because a discrete method was adopted to insert the geometric discontinuity. As a consequence,
we have a more abrupt softening observed in the numerical curves. It is intended to study different values of D
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and E and perform analyses including cohesive forces to correct this phenomenon. It is also evident that the mesh
refinement interferes with the proposed model response.

Besides this disparity, the qualitative description of the crack propagation (Fig. 7) fits the experimental pattern
with great coherence. The damage spectrum presented in Fig. 8 follows such pattern either. Even using a nonlocal
model, coupled with the discrete crack method, the damage did not spread along with the crack neighborhood.

5 Conclusions

This research proposed a continuous-discontinuous model. Based on the results, the main conclusions are:
• The association between the nonlocal damage model and the discrete crack method performed well, and

both worked satisfactorily to represent the continuum and the discontinuous material behavior, respectively;
• The nodal duplication, alone, can not represent a discrete crack properly because of stiffening;
• Good results were achieved by associating the nodal duplication with the element erosion;
• The representation of the equilibrium path needs to be improved since the discrete method accelerates the

degradation process;
• There are evident signs of mesh dependence in the numerical equilibrium paths. However, the deformed

shape of the structure did not present a relevant difference for the meshes analyzed.
Further studies will include:

• Improvement of the nodal duplication technique;
• Analyses of different values of D and E;
• Adoption of other parameters to control the crack propagation, besides the damage;
• Develop a continuous-discontinuous model including cohesive forces.
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