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Abstract. The pore pressure model serves as a subsidy for the well project, predicting potential risk events. Events 

such as stuck pipe and inflow of fluids into the well result in a high cost in exploratory oil projects, either due to 

the time spent fighting them, or the complete loss of the well. Unfortunately, in exploratory projects we do not 

have enough data, nor the indirect data have good reliability, therefore, these models have high uncertainties. The 

present work proposes the application and evaluation of the uncertainty and sensitivity analysis methodology in 

the 1D pore pressure models used in the drilling of exploratory oil wells, to quantify and measure their impact. For 

this purpose, data from wells drilled in the Santos Basin, southeastern Brazilian margin, were used. 
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1  Introduction 

The prediction of the pore pressure using ndirect methods use the concept of effective stress, the stress that 

will control changes in volumes or rupture of porous media saturated with water described by Terzaghi [1] apud 

Skempton [2]. In regions with abnormal pore pressure, there is a deviation in the transit time of the acoustic wave 

from what is considered normal for the same region, geology, and depth. The transit times are abnormal due to the 

formations being undercompacted, presenting porosities greater than those estimated for the rock compaction by 

the effective tension with normal pore pressure. 

For pore pressure predictions affected by undercompaction we use Eaton's equation [3]: 

 𝑃𝑝 = 𝜎𝑣 − (𝜎𝑣 − 𝑃ℎ) (
𝛥𝑡𝑁

𝛥𝑡𝑚
)
𝐸

  (1) 

Where 𝑃𝑝 is the pore-pressure pressure, 𝜎𝑣 is the overburden stress, the pressure exerted by the weight of the 

overlying rock, and 𝑃ℎ is the hydrostatic pore pressure, which is derived from the expected weight for a fluid 

column to the calculated depth. Δ𝑡𝑚 is the measured acoustic transit time and Δ𝑡𝑁 is the expected value of the 

normal compaction line of the acoustic transit time. E is the Eaton’s exponent; it tells how much a difference 

between the measured property and the equivalent of a region without overpressure are equivalent in terms of 

excess pore pressure. This exponent is calibrated with the measured data and varies according to the region studied 

and the geophysical data used. 

During exploratory drilling campaigns, we do not have data measured in the target reservoirs to calibrate the 

pore pressure model, therefore, we use theoretical and/or empirical models and data from regions considered 

analogous. As this choice is made through the experience of the professional, this model is surrounded by 

uncertainties and more susceptible to errors. This work proposes the analysis of the impact of uncertainties in the 

1D pore pressure models of exploratory wells and the analysis of the sensitivity of the variables used. The 

quantification of the uncertainties and sensitivity analysis of the pore pressure models should make it possible to 
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understand the importance of the prediction variables, show the influence of the precision of the input variables, 

improve the predictions, and increase the productivity and safety of exploratory well projects. 

For the analysis of uncertainties in oil and gas drilling operations the most used approach consists of taking 

the model that is used for pore pressure prediction and propagating the uncertainties of the input variables to the 

output through a Monte Carlo simulation (MC) [4]. Several times the uncertainties of the input variables, the 

theoretical probability distributions and parameters, are chosen without even observing whether they are consistent 

with empirical data. To deal with this, we used data from 416 wells in the Santos Basin in 79 field/sites. 

2  Data and Methodology 

The standard 1D pore pressure prediction workflow using Eaton’s equation and seismic velocities for 

exploratory wells can be summarized by the following steps: 1) use of the density curve to estimate total vertical 

stress, overburden. As there is no direct measurement for exploratory wells, a correlation with the seismic interval 

velocity is used; 2) generation of the normal compaction trend in terms of the seismic interval velocity. 3) Eaton's 

coefficient calibration with measured pressure data; 4) and with the results of the previous steps, calculate the 

estimated pore pressure for the planned exploratory well. 

As we were unable to obtain seismic data for this project, we had to create a synthetic seismic velocity data 

from the transit time data measured in the wells. 

The Monte Carlo method was chosen to obtain the final probability distribution and samples for sensitivity 

analysis. Using 10000 samplings for each of the Eaton’s equations inputs, we performed several deterministic 

models to obtain the uncertainty of the Eaton exponent and prediction of the pore pressure. For the uncertainty 

modeling of the input variables, we chose ten of the most common distributions to test: Cauchy, chi-squared, 

exponential, exponential power, gamma, lognormal, normal, power-law, Rayleigh and uniform. To choose which 

one best fits the measured data, we chose two metrics: the sum of the squared errors of (SE), the Kullback-Leibler 

divergence (KLB). The SE tells how far the fitted values are from the measured values and KLB is a measure of 

how much information was lost when approaching the data by the theoretical distribution. 

2.1 Overburden Stress 

The overburden stress 𝜎𝑣 is determined from the integration of the density profile. For exploratory well 

projects we do not have direct density measurements, density is estimated through correlation with interval 

velocities. To obtain the density from seismic velocities we used a regression proposed by Gardner et al. [5]: 

 𝜌 = 𝛼𝑉𝛽  (2) 

Where 𝜌 is the estimated density, 𝑉 is the measured interval velocity and 𝛼, 𝛽 are the coefficients obtained 

by the regression. 

The factors that most contribute to the uncertainty of the calculation of the overburden’s densities in 

exploratory wells are the interval velocity model obtained by the seismic and the regression used to transform 

velocity into density. The seismic uncertainty is complex and varies according to the techniques used during data 

acquisition, its processing, available resources and the geological peculiarities of the region. As we did not find 

data and bibliographies to satisfactorily substantiate this quantification of uncertainty in the velocity model, we 

chose to quantify only the uncertainty related to well measurements and the respective transformation of velocity 

data into density. 

Linearizing the Gardner et al. equation, that is, applying the logarithmic function, we obtain the following 

result: 

 𝑙𝑜𝑔⁡(𝜌) = 𝑙𝑜𝑔(𝛼𝑉𝛽) = 𝑙𝑜𝑔(𝛼) + 𝛽 𝑙𝑜𝑔(𝑉)  (3) 

Therefore, to obtain the coefficients of the equation we only need to perform a linear regression of the type:  

 𝑙𝑜𝑔⁡(𝜌) = 𝑙𝑜𝑔(𝛼) + 𝛽 𝑙𝑜𝑔(𝑉) + 𝜀,   𝑚𝑖𝑛⁡(𝜀2)  (4) 

Where ε are the regression residuals that are minimized according to 𝜀2. The consequence of this regression 

is that these residuals follow a normal distribution of zero mean and constant variance over 𝑥 = log(𝑉): 
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 𝜀 = 𝒩(0, 𝜎(𝜀)2)  (5) 

The theoretical distribution of this density estimator, log⁡(𝜌̂), will be a normal distribution with mean equal 

to log(𝛼) + 𝛽 log(𝑉) and variance equal to the residual ε (Fig. 1): 

 𝑙𝑜𝑔⁡(𝜌̂) = 𝒩(𝑙𝑜𝑔(𝛼) + 𝛽 𝑙𝑜𝑔(𝑉)⁡, 𝜎(𝜀)2)  (6) 

 

Figure 1. Velocity regression with density, black line is the regression result and red lines represent the 1st and 

99th percentile of the density uncertainty model. 

2.2 Normal Pore Pressure 

The normal pore pressure model follows the same proposal as the overburden stress but using the formation 

water density. Its magnitude is obtained through the integration of the density profile of the formation water, which 

occurs naturally in the pores of the rocks, and the seawater, in offshore wells. 

Despite the Cauchy distribution being the one that best adjusts the formation water densities, according to 

the criterion of the sum of squared errors, we opted for the Exponential Power distribution. It was the one that best 

represented the distribution both by the KDL criterion and by the histogram (Fig. 2), it was able to portray the 

wider tail and the asymmetry to the left of the data. 
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Figure 2. Histogram of formation water densities with the five distributions that best fit the data by the sum of 

squared errors criterion. 

2.3 Normal compression trend 

For the calculation of normal compaction trend lines, we used the method proposed by Hottmann and Johnson 

[6] to draw a linear line on the logarithmic transit time graph plot. A conventional linear regression was performed 

on the transit times profiles in normal pore pressure zones: 

 𝑙𝑜𝑔(∆𝑡𝑁) = 𝑎 − 𝑏𝑧,   𝑡𝑜𝑝⁡𝑜𝑓⁡𝑛𝑜𝑟𝑚𝑎𝑙⁡𝑃𝑝⁡𝑧𝑜𝑛𝑒 < 𝑧 < 𝑏𝑎𝑠𝑒⁡𝑜𝑓⁡𝑛𝑜𝑟𝑚𝑎𝑙⁡𝑃𝑝⁡𝑧𝑜𝑛𝑒  (7) 

Where a and b are regression coefficients and z is the burial depth, vertical depth subtracted from the water 

depth. In the same way as the linear regression of the density by velocity explained earlier, we can calculate its 

theoretical uncertainty distribution. 

One of the sources of uncertainty that can generate quite divergent results is the choice of the top and bottom 

of the zone considered to have normal pore pressure. Based on the pore pressure measurements by stratigraphy, 

on the percentage of fields with overpressure measurements and on the stratigraphic chart of the Santos Basin, we 

chose to always include in the trend regression of normal pore pressure the Marambaia Formation and the base of 

the regression is going to be one drawn randomly among all the other tops of remaining formations. 

2.4 Eaton exponent optimization 

Using the Monte Carlo method, Eaton’s equation, the uncertainties of the input variables and the pressures 

measured in the wells, we obtained the uncertainty of the Eaton coefficient. From the distribution of these results 

(Fig. 3) we conclude that according to the criterion of the sum of squared errors, the curve that best describes the 

behavior of the Eaton Exponent is the log-normal distribution. 
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Figure 3. Histogram of Eaton's Exponents with the 5 distributions that best fit the data by the criterion of sum of 

squared errors. 

2.5 Sensitivity Analysis  

For linear trends, the measures that work well are Pearson's correlation coefficient. Pearson's correlation 

coefficient measures the strength and direction of linear relationships between pairs of variables, in this case the 

input and output variable of the uncertainty model. It varies from -1 to +1, the closer to 0 the lower the correlation 

of the variables and the closer to -1 or 1 the greater it is. 

For non-linear non-monotonic trends, methods based on the decomposition of the variance of the model 

output are the most suitable, such as the Sobol method [7]. The variance-based sensitivity analysis indices are 

between 0 and 1. A high index indicates a strong relationship between the variation of input and output. 

The Sobol method is computationally expensive if the number of input variables is large. To get around this 

we chose the RBD-FAST method, Random Balance Design of Fourier Amplitude Sensitivity Test [8], to estimate 

the first-order sensitivity indices. It is based on the combination of the RBD sampling technique, Random Balance 

Design [9], with the Fourier transform to decompose the model output variance, FAST, Fourier Amplitude 

Sensitivity Test [10] [11]. 

3  Results 

From the Fig. 4 and the analysis using the RBD-FAST sensitivity index we obtained that the uncertainty of 

the Eaton exponent is the variable that most impacts the uncertainty of the pore pressure model by 

undercompaction in Santos Basin and the second is the transit time variable. 
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Figure 4. Scatter plots between input variables and pore pressure the pore pressure modeled. In black, linear 

regression, r is Pearson's correlation coefficient, and S1 is the first-order sensitivity index of RBD-FAST. 

Carvalho et al. [12] evaluated two overpressure mechanisms in the Guarujá Formation of the Santos Basin 

that do not involve the undercompaction model. Of the nine fields/sites of Fm. Guarujá studied, six have high 

pressures (>10 lb/gal). All measurements of high-pressure fields/sites are within our uncertainty quantification of 

the Eaton’s model (Fig. 5). 

Granitoff [13] studied the high pore pressures in the Itajaí-Açu Formation and applied the Eaton’s method. 

His interpretation is that the Eaton's method with a coefficient of 3, the standard coefficient of the methodology, 

was sufficient to calibrate satisfactorily with the well data he had. Of the 17 fields/sites of Fm. Itajaí-Açu, only 2 

have high pressures (>10 lb/gal). Both are within the uncertainty modeled (Fig. 5). 

Picolini and Chang [14] used Eaton coefficients from 3 to 5.5 in their work studing the Itajaí-Açu Formation, 

Juréia, Formation and Ilha-Bela Member. Of the 33 fields/locations with those formation 4 have high pressures 

(>10 lb/gal). All of them are within the uncertainty modeled (Fig. 5). 

 

Figure 5. Box diagram of modeled Eaton’s  

4  Conclusions 

Given the epistemological and practical limitations of this type of work, the results were satisfactory. We 

were able to assess that the variables that most impact the overcompaction models of the Santos Basin are the 

Eaton coefficients and the transit time of the normal compaction curve. With this we have an idea of what needs 

to be improved in the models that are currently made. This, added to the development of an automated 
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methodology for this model construction process and Eaton and its respective uncertainties allow a greater gain in 

the workflow of exploratory well projects, either by the gain in scalability, of being able to work with a large 

number of wells, as well as the removal of interpretive bias and greater coherence of some work steps. 

Eaton's method [3] has limitations, which may have impacted the results and should be analyzed in future 

research. They are: i) we do not consider breaking the normal compaction trend, despite the studies on geological 

evolution in the Santos Basin indicating this; ii) other overpressure generation mechanisms; iii) transit time is not 

a direct measurement of porosity, low transit times may be indicative of lithological or compositional changes in 

the rock [15]; iv) mechanisms of overpressure in carbonate rocks, as is the case of Guarujá Formation, are poorly 

understood and do not have a clear signature in transit time [15]; v) seismic transit times/velocities are not reliable 

in some regions. We did not have access to real seismic, we believe that this should have a significant impact, and 

perhaps the seismic uncertainty is even more important than those mapped in this study. 

Finally, it should be noted that these conclusions are specific to the models, assumptions and data used. It is 

not guaranteed that, using data from other Basins or other types of overpressure models, the results will be the 

same. 
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