
   
 

CILAMCE-2022 

Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  
Foz do Iguaçu, Brazil, November 21-25, 2022 

Effects of epistemic uncertainties on truss topology optimization 

considering progressive collapse 

Lucas A. Rodrigues da Silva1, André T. Beck1, André J. Torii2 

1Dept. of Structural Engineering, University of São Paulo 

Av Trabalhador São-carlense, 400, 13566-590, São Carlos, SP, Brazil 

araujolucasrs@usp.br, atbeck@sc.usp.br 

Abstract. The history of engineering contains many examples of structural failures. Despite being related to 

diverse causes, these collapses can be attributed to the existence of uncertainties, which are usually classified as 

aleatory and epistemic. In this context, optimization techniques can be employed in order to obtain optimal 

structural solutions that are robust to the effects of uncertainty. Additionally, the progressive collapse phenomenon 

has raised engineers' and researchers' awareness in recent years. However, there are still very few papers addressing 

the optimal structural design under uncertainty considering progressive collapse. Hence, this paper aims to 

investigate the effect of aleatory and epistemic uncertainties on truss topology optimization considering 

progressive collapse. Uncertainties are considered in the optimization problems through the RBDO (Reliability-

Based Design Optimization) and RO (Risk Optimization) formulations. Non-structural factors, which are 

epistemic in nature and can lead to progressive collapse, are considered using a formulation based on the latent 

failure probability concept. Through a simple six-bar truss problem, the huge impact of epistemic uncertainties on 

optimal topologies is shown. The variation of the latent failure probability indicates the existence of two transition 

points in the optimal solutions, named Hyperstatic and Redundancy Thresholds. We conclude that these bounds 

are mainly controlled by the magnitude of epistemic uncertainties, having a strong effect on the reliability and 

costs of the optimal solutions. These results reveal something that has already been recognized in practice: 

engineering structures need to be redundant in order to cope with the effect of epistemic uncertainties. Therefore, 

despite being an idealized concept, the latent failure probability proves to be a simple tool to impose minimal 

redundancy in optimal structural solutions. 
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1  Introduction 

The occurrence of events that led to large structural collapses, such as the Ronan Point Tower accident and 

the terrorist attack at the World Trade Center, has raised engineers’ and researchers’ awareness of the importance 

of robust design with respect to the progressive collapse phenomenon [1]. Although several studies on progressive 

collapse have been developed in the last two decades, as reported in Adam et al. [1], the study of optimal design 

under uncertainty with objective consideration of this phenomenon is still recent [2-4].  

The formulations used to address uncertainties in optimization problems include Reliability-Based Design 

Optimization (RBDO) and Risk Optimization (RO). Typically, these formulations address objective, aleatory 

uncertainties. Epistemic uncertainty is commonly handled through possibilistic approaches, which employ set 

theory, intervals, fuzzy sets and fuzzy probabilities [5]. However, such formulations are considered of limited 

usefulness because, despite being appropriate to handle epistemic uncertainties arising from ignorance and 

vagueness, they are not ideal to take into account gross errors in design, human errors and operational abuse. These 

non-structural factors are epistemic in nature and may lead to the progressive collapse of structural systems. 

In this paper, we investigate the effects of aleatory and epistemic uncertainty in truss topology optimization 

considering progressive collapse. Given the limitations of possibilistic approaches, epistemic uncertainty 

associated to non-structural factors such as gross errors in design and manufacturing, human errors, unpredicted 
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load conditions and operational abuse is considered through formulations based on latent failure probability 

concept [3]. Through a simple six-bar truss example, the huge impact of epistemic uncertainty in reliability-based 

and risk-based optimization is shown. 

2  Formulation 

2.1 Systems Reliability 

Let X and d be, respectively, the vectors of the random and design variables of a structural system. 

Additionally, let gi (X,d) be the limit state function associated with the ith failure mode or with the ith element. 

Analyzing the progressive collapse of hyperstatic systems involves the definition of the possible failure sequences, 

including the load redistribution after the failure of each element. Hence, the probability of failure for a typical 

structural system is given by: 

            𝑝𝑓𝑆𝑌𝑆
(𝐝) = 𝑃[𝐗 ∈ Ω𝑓𝑠𝑦𝑠] = ∫ 𝑓𝑿(𝐱) 𝑑𝒙

Ω𝑓𝑆𝑌𝑆

  (1) 

where P[.] is the probability operator, 𝑓𝑿(𝒙) is the joint probability density function and Ω𝑓𝑆𝑌𝑆
(𝐝) is the system 

failure domain, written as: 

            Ω𝑓𝑆𝑌𝑆
(𝐝) = {𝐗| ⋃ [⋂ (g𝑖(𝐗, 𝐝) ≤ 0) 𝑖 ∈ 𝐶𝑘

]𝑘 } (2) 

where Ck represents the kth failure sequence and g𝑖(𝐗, 𝐝) ≤ 0 denotes the ith event that composes the failure 

sequence. 

In this study, the probability of failure given in eq. (1) is evaluated using the Monte Carlo method with 

Stratified Sampling, or simply Stratified Sampling Monte Carlo (SSMC) [6]. 

2.2 Truss Topology Optimization: RBDO and RO formulations 

The latent failure probability concept is employed in RBDO and RO formulations of truss topology 

optimization problem in order to take into account the impact of epistemic uncertainty. This concept was 

introduced by Beck (2020) [3] to represent the effects of non-structural factors that may affect system performance. 

According to the author, any structural design or structural optimization analysis should start with a risk analysis, 

addressing the location of the structure and its surrounding environment, all possible threats and load cases, the 

reliability of the manufacturing process, and so on. Many of these factors represent uncertainties of epistemic 

nature. Beck (2020) [3] postulated that the “environment” would contribute with a fixed probability for each 

structural element, and/or for the whole structure. This latent failure probability, due to its epistemic nature, does 

not depend on usual design variables, such as cross-sectional areas or number of elements, but it depends on the 

above-mentioned non-structural factors. 

The RBDO formulation for the minimum weight truss topology optimization problem addressed in this study, 

considering 𝑝𝐿 , is given by: 

                  given 𝑝
𝐿
, find d* which minimizes 𝑊(𝐝) = ∑ 𝜌𝑖𝐴𝑖𝐿𝑖

𝑛
𝑖=1  

                                             subjected to: 𝑝𝑓𝑆𝑌𝑆
(𝐝, 𝐗, 𝑝𝐿) ≤ 𝑝𝑓𝑇𝑆𝑌𝑆

 

                     𝐴𝑖
𝑚𝑖𝑛 ≤ 𝐴𝑖 ≤ 𝐴𝑖

𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑛 

(3) 

where: 𝐝 = {𝐴1, 𝐴2, … , 𝐴𝑛} is the design vector, containing the cross-sectional areas of all elements; 𝑊(𝐝) is the 

total structural weight; 𝜌𝑖, 𝐴𝑖 e 𝐿𝑖 are, respectively, the specific mass, the cross-sectional area and the length of the 

𝑖𝑡ℎ bar; 𝑛 is the number of bars; 𝐴𝑖
𝑚𝑖𝑛 and 𝐴𝑖

𝑚𝑎𝑥 are the lower and upper bounds of the design variables; ℛ = (1 −

𝑝𝑓𝑇𝑆𝑌𝑆
) is the target system reliability. In conventional RBDO formulation, there is no latent failure probability, 

or simply 𝑝𝐿 = 0. This is equivalent to assuming that there are no epistemic uncertainties.  

Structures resulting from RBDO are optimal in mechanical sense and respect minimal specified reliability 

targets. However, the balance between cost and safety is not addressed by this formulation. When the objective is 

to find the optimal balance between economy and safety, the costs over the life-cycle of the structure must be taken 

into account. The risk-based formulation makes it possible through the definition of the following total expected 

cost function 𝐶𝐸𝑇(𝐝, 𝐗): 
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      𝐶𝐸𝑇(𝐝, 𝐗) = 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝐝) + 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝐝) + 𝐶𝑖𝑛𝑠𝑝.&𝑚𝑎𝑖𝑛𝑡(𝐝) + 𝐶𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙(𝐝) + 𝐶𝐸𝐹(𝐝, 𝐗) (4) 

In this work, only construction costs and expected costs of failure are considered. In order to differentiate 

failure consequences in progressive collapse analysis, the expected costs of failure are given by: 

 

           𝐶𝐸𝐹(𝐝, 𝐗) = 𝐶𝐻𝐹𝑝𝐻𝐹(𝐝, 𝐗) + 𝐶𝑃𝐶𝑝𝑃𝐶(𝐝, 𝐗) + 𝐶𝐷𝐹𝑝𝐷𝐹(𝐝, 𝐗) 

 
(5) 

where 𝐶𝐻𝐹 and 𝑝𝐻𝐹  are the cost and probability of hyperstatic failures, which do not lead to global collapse; 𝐶𝑃𝐶 

and 𝑝𝑃𝐶  are the cost and probability of progressive collapse failures; and 𝐶𝐷𝐹 and 𝑝𝐷𝐹  are the cost and probability 

of direct collapse failures. Thus, for the problems addressed in this paper, the total expected cost is: 

 

           𝐶𝐸𝑇(𝐝, 𝐗) = 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝐝) + 𝐶𝐻𝐹𝑝𝐻𝐹(𝐝, 𝐗) + 𝐶𝑃𝐶𝑝𝑃𝐶(𝐝, 𝐗) + 𝐶𝐷𝐹𝑝𝐷𝐹(𝐝, 𝐗) 

 
(6) 

Construction cost is assumed proportional to the structural mass: 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝐝) = ∑ 𝜌𝑖𝐴𝑖𝐿𝑖
𝑛
𝑖=1 . For 

isostatic structures, 𝐶𝐻𝐹 and 𝐶𝑃𝐶 are zero. For hyperstatic structures, 𝐶𝐻𝐹 is assumed proportional to the mass of 

the 𝑔 bars of greater mass, where 𝑔 is the hyperstatic degree of the structure. This represents the cost of substitution 

for the damaged bars. A factor 𝑘𝐻𝐹 is introduced to represent the consequences of hyperstatic bar failures, such 

that: 𝐶𝐻𝐹 = 𝑘𝐻𝐹 ∑ 𝜌𝑖𝐴𝑖𝐿𝑖
𝑔
𝑖=1 . Also, an important distinction must be made between the costs of the direct collapse 

and the costs of the progressive collapse of a hyperstatic structure. In theory, when progressive collapse is ductile, 

the primary element failure provides a warning for the structure to be evacuated and/or its use to be interrupted. 

Hence, consequences of failure are reduced, in comparison to direct collapse. With such reasoning, global collapse 

cost terms 𝐶𝑃𝐶 and 𝐶𝐷𝐹 are written as 𝐶𝑃𝐶 = 𝑘 𝐶𝑅𝐸𝐹  and 𝐶𝐷𝐹 = 𝛼 𝑘 𝐶𝑅𝐸𝐹 , where 𝐶𝑅𝐸𝐹 is a reference cost; 𝑘 is a 

multiplier for consequences of progressive collapse leading to global collapse; 𝛼 is another multiplier to account 

for global collapse with no warning, such that 𝛼 = 𝐶𝐷𝐹/𝐶𝑃𝐶 ≥ 1. 

Finally, the RO formulation for the topology optimization problems addressed herein is: 

 

                  given 𝑝
𝐿
, find d* which minimizes 𝐶𝐸𝑇(𝐝, 𝐗, 𝑝

𝐿
) 

                                                   subjected to: 𝐴𝑖
𝑚𝑖𝑛 ≤ 𝐴𝑖 ≤ 𝐴𝑖

𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑛                 

(7) 

In a conventional risk-based formulation, the latent failure probability is simply 𝑝𝐿 = 0.  

2.3 Progressive collapse evaluation 

As stated in the previous section, a latent failure probability 𝑝𝐿  is introduced in order to represent the effects 

of epistemic uncertainties. In this paper, the same value of 𝑝𝐿  is considered for all bars of the truss. Also, it is 

important to note that the actual epistemic cause of a bar failure is irrelevant; it is enough to assume that there is a 

fixed probability 𝑝𝐿  that every bar of the truss may fail, losing its load capacity. 

In the ground structure approach employed in this study, there is a possibility that isostatic and hyperstatic 

candidate solutions appear during the optimization process. For hyperstatic candidate solutions, progressive 

collapse needs to be considered. In order to clearly define and formulate the progressive collapse problem, it is 

considered that the truss is subject to 𝑔 + 1 load applications, where 𝑔 is the degree of static indeterminacy. In the 

present formulation, the probability of a bar failing due to epistemic reasons is considered only in the first load 

application. If 𝑔 + 1 bars fail, we have a direct collapse. If the number of epistemic bar failures is 𝑔 or less, there 

is a probability that any bar fails due to aleatory uncertainty in loads and bar strengths. If a bar fails, it is removed, 

load redistribution is considered, and so on, until 𝑔 + 1 bars fail, and equilibrium can no longer be warranted.  

In the following formulation, only trusses with a maximum hyperstatic degree of 𝑔 = 1 are considered. 

Unfortunately, the formulation for 𝑔 > 1 becomes quite complicated. Let 𝐹𝑖 be the event “Failure of bar 𝑖” and 

𝑃[𝐹𝑖] be the probability of such an event. The system failure probability for a hyperstatic truss with 𝑛 bars is: 

 

             𝑝𝑓𝑠𝑦𝑠(𝐝, 𝐗, 𝑝𝐿) = (1 − 𝑝𝐿)𝑛(∑ 𝑃[𝐹𝑖]𝑃[⋃ 𝐹𝑗|𝐹𝑖
𝑛
𝑗=1,𝑗≠𝑖 ]𝑛

𝑖=1,𝑖∉𝑖𝑠𝑜 + ∑ 𝑃[𝐹𝑖]𝑛
𝑖=1,𝑖∈𝑖𝑠𝑜 +

                𝑃[⋃ (𝐹𝑖 ⋂ 𝐹𝑗
𝑛
𝑗=1,𝑗≠𝑖 )𝑛

𝑖=1 ]) + 𝑝𝐿(1 − 𝑝𝐿)(𝑛−1)(∑ 𝑃[⋃ 𝐹𝑗|𝐹𝑖
𝑛
𝑗=1,𝑗≠𝑖 ]𝑛

𝑖=1,𝑖∉𝑖𝑠𝑜 )     

                      + ∑
𝑛!

𝑘!(𝑛−𝑘)!
𝑝𝐿

𝑘(1 − 𝑝𝐿)(𝑛−𝑘)𝑛
𝑘=2 + 𝑛𝑖𝑠𝑜𝑝𝐿(1 − 𝑝𝐿)(𝑛−1)   

(8) 
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where 𝑖𝑠𝑜 is a counter for and 𝑛𝑖𝑠𝑜 is the number of isostatic elements. 

In eq. (8), the first term corresponds to no bar failures due to epistemic reasons; the first term in parenthesis 

is the sequential failure of two bars (bar 𝑗 conditional on bar 𝑖), the second term represents the failure of an isostatic 

element and the third term is the simultaneous failure of two bars. The second term corresponds to one epistemic 

bar failure. The last line corresponds to 𝑘 bar failures due to epistemic reasons. 

For an isostatic candidate solution, the system failure probability is: 

 

      𝑝𝑓𝑠𝑦𝑠(𝐝, 𝐗, 𝑝𝐿) = (1 − 𝑝𝐿)𝑛(𝑃[⋃ 𝐹𝑖
𝑛
𝑖=1 ]) + ∑

𝑛!

𝑘!(𝑛−𝑘)!
𝑝𝐿

𝑘(1 − 𝑝𝐿)(𝑛−𝑘)𝑛
𝑘=1  (9) 

For the risk-optimization solution, the total expected costs need to be evaluated. For a hyperstatic candidate 

solution, 𝐶𝐸𝑇(𝐝, 𝐗, 𝑝𝐿) can be written as: 

 

     𝐶𝐸𝑇(𝐝, 𝐗, 𝑝𝐿) = 𝐶𝐻𝐹(1 − 𝑝𝐿)𝑛(∑ 𝑃[𝐹𝑖](1 − 𝑃[⋃ 𝐹𝑗|𝐹𝑖
𝑛
𝑗=1,𝑗≠𝑖 ])𝑛

𝑖=1,𝑖∉𝑖𝑠𝑜 ) 

                          +𝐶𝐻𝐹𝑝𝐿(1 − 𝑝𝐿)(𝑛−1)(∑ (1 − 𝑃[⋃ 𝐹𝑗|𝐹𝑖
𝑛
𝑗=1,𝑗≠𝑖 ])𝑛

𝑖=1,𝑖∉𝑖𝑠𝑜 )  

              +𝐶𝑃𝐶(1 − 𝑝𝐿)𝑛(∑ 𝑃[𝐹𝑖]𝑃[⋃ 𝐹𝑗|𝐹𝑖
𝑛
𝑗=1,𝑗≠𝑖 ]𝑛

𝑖=1,𝑖∉𝑖𝑠𝑜 )  

                 +𝐶𝑃𝐶𝑝𝐿(1 − 𝑝𝐿)(𝑛−1)(∑ 𝑃[⋃ 𝐹𝑗|𝐹𝑖
𝑛
𝑗=1,𝑗≠𝑖 ]𝑛

𝑖=1,𝑖∉𝑖𝑠𝑜 )  

                                +𝐶𝐷𝐹(1 − 𝑝𝐿)𝑛(∑ 𝑃[𝐹𝑖]𝑛
𝑖=1,𝑖∈𝑖𝑠𝑜 + 𝑃[⋃ (𝐹𝑖 ⋂ 𝐹𝑗

𝑛
𝑗=1,𝑗≠𝑖 )𝑛

𝑖=1 ])  

                                +𝐶𝐷𝐹 (∑
𝑛!

𝑘!(𝑛−𝑘)!
𝑝𝐿

𝑘(1 − 𝑝𝐿)(𝑛−𝑘) + 𝑛𝑖𝑠𝑜𝑝𝐿(1 − 𝑝𝐿)𝑛−1𝑛
𝑘=2 ) 

                                                                          + ∑ 𝜌𝑖𝐴𝑖𝐿𝑖
𝑛
𝑖=1   

(10) 

where: 𝑘𝐻𝐹 is the hyperstatic bar failure cost factor; 𝑘𝑃𝐶 = 𝑘 is the cost factor for progressive collapse; 𝑘𝐷𝐶 = 𝛼 𝑘 

is the direct failure cost factor; 𝑘 and 𝛼 are the multiplying factors presented in section 2.3. 

For a candidate isostatic solution, the total expected costs are: 

 

                  𝐶𝐸𝑇(𝒅, 𝑿, 𝑝𝐿) = 𝐶𝐷𝐹(1 − 𝑝𝐿)𝑛(𝑃[⋃ 𝐹𝑖
𝑛
𝑖=1 ])+𝐶𝐷𝐹 (∑

𝑛!

𝑘!(𝑛−𝑘)!
𝑝𝐿

𝑘(1 − 𝑝𝐿)(𝑛−𝑘)𝑛
𝑘=1 ) + ∑ 𝜌𝑖𝐴𝑖𝐿𝑖

𝑛
𝑖=1    (11) 

The optimization problems discussed in this paper are nonlinear, non-convex and discontinuous. Hence, the 

use of gradient-based optimization methods becomes impractical. On the other hand, heuristic algorithms are 

suitable for problems involving nonlinear and non-differentiable functions, with multiple local minima. The main 

drawback of such methods is their computational cost, which grows in proportion to the population size. 

Nevertheless, for the problems presented in this study, these methods prove to be advantageous. The optimal 

solutions for the problems formulated in the previous section are obtained using the Particle Swarm Optimization 

(PSO) method. In order to better control exploration and exploitation, an inertia weight strategy proposed by Cekus 

and Skrobek [7] is employed. Also, as PSO does not yield any guarantees that the global optimal is found, every 

problem variant is solved 10 replications with different initial population sets. 

The truss topology optimization performed in this study follows the ground structure approach [8]. The bars 

are eliminated from the ground structure following the criteria proposed by Deb and Gulati [9]. The cross-sectional 

areas are compared to a small value 𝜖, called critical area. If the element area is smaller than the critical value, the 

bar is eliminated from the ground structure. Note that the value of 𝜖 and the lower (𝐀𝑚𝑖𝑛) and upper (𝐀𝑚𝑎𝑥) bounds 

of the cross-sectional areas must be selected so that an unnecessary element has a considerable probability of being 

removed from the final topology. Besides, in order to avoid singular stiffness matrices associated to unstable 

solutions, the displacements of unconnected nodes are set equal to zero. 

3  Numerical example: Six-bar truss 

The truss studied in this paper is presented in Figure xx. It is a 6-bar 4 node truss with a horizontal force 𝐹 

applied at node D. The force follows a Gumbel distribution with mean intensity of 500 kN and a coefficient of 

variation of 10%. The maximum allowable stress is 250 MPa in tension and compression. The elasticity modulus 

is 200 GPa and material density is 7850 kg/m3. Critical are for bars is 0.10 cm2. Topology optimization is 

performed first using the RBDO formulation, then the RO formulation. In both cases, the conventional solutions 

(𝑝𝐿 = 0) are compared to those obtained considering the effect of epistemic uncertainties. 
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3.1 Results for system RBDO 

RBDO solutions were computed for 𝛽𝑇 = 3 and 𝛽𝑇 = 4, for increasing values of 𝑝𝐿 . For each 𝑝𝐿  value, 10 

replications were made. The best solutions for 𝛽𝑇 = 3 are presented in Table 1. The optimal system reliability 

indexes 𝛽𝑠𝑦𝑠 were obtained by post-processing, using simple Monte Carlo simulation with 106 samples. In order 

to interpret the results presented in Table 1, we need to consider the maximum reliability that the isostatic 3-bar 

(3B) system can achieve, given the presence of epistemic uncertainty, which is written as: 

      𝛽𝑚𝑎𝑥3𝐵 = Φ−1[(1 − 𝑝𝐿)3] (12) 

Table 1 - Optimal RBDO solutions for 𝛽𝑇 = 3. 

Design Variables 
Latent Failure Probability 

𝟎 5×10-7 10-6 5×10-6 10-5 5×10-5 10-4 5×10-4 10-3 5×10-3 10-2 5×10-2 

A1 (cm2) 29.31 29.29 29.39 0.12 29.36 29.48 29.68 19.97 20.89 24.78 35.66 37.52 

A2 (cm2) 0.00 0.00 0.00 29.35 0.00 0.00 0.00 19.69 21.47 24.07 35.66 37.49 

A3 (cm2) 0.00 0.00 0.00 29.34 0.00 0.00 0.00 19.69 21.41 24.00 35.66 37.49 

A4 (cm2) 29.31 28.29 29.39 0.00 29.36 29.48 29.68 19.94 21.06 24.74 35.66 37.48 

A5 (cm2) 0.00 0.00 0.00 41.49 0.00 0.00 0.00 27.84 30.28 33.95 50.44 53.02 

A6 (cm2) 41.45 41.42 41.56 0.17 41.52 41.69 41.97 28.21 29.69 34.98 50.43 53.00 

Obj. Fun. (kg) 138.06 137.95 138.42 138.62 138.27 138.86 139.79 186.70 199.75 229.69 335.94 353.15 

Type of system Iso Iso Iso Iso Iso Iso Iso Hyper Hyper Hyper Hyper Hyper 

𝛽𝑠𝑦𝑠 ≅ 𝛽𝑇 2.99 2.99 2.98 2.97 3.01 2.97 3.00 3.00 3.00 3.00 2.98 1.84 

𝛽𝑚𝑎𝑥3𝐵 ∞ 4.67 4.53 4.17 4.01 3.62 3.43 2.97 2.74 2.17 1.89 1.07 

 

Analyzing the first seven columns of Table 1, we note that, for small values of 𝑝𝐿 , the optimal trusses are 

isostatic structures. Most of these solutions are three-bar trusses. We notice that these isostatic solutions are 

obtained when 𝛽𝑠𝑦𝑠 ≅ 𝛽𝑇 < 𝛽𝑚𝑎𝑥3𝐵 . Hence, the reliability constraint allows the truss system to be less reliable 

than the background reliability imposed by 𝑝𝐿  (eq. (12)). This can be accomplished by non-redundant isostatic 

structures. We also observe that, when 𝛽𝑠𝑦𝑠 ≅ 𝛽𝑇 > 𝛽𝑚𝑎𝑥3𝐵 , the optimal solutions become redundant 6-bar 

hyperstatic structures. By redundant, we mean that the additional bars have enough capacity to withstand load 

redistribution, following failure of a hyperstatic bar. Therefore, we note that the reliability constraint requires the 

truss system to be more reliable than the background reliability imposed by 𝑝𝐿 . To achieve this, the system must 

become redundant. Also, the value of 𝑝𝐿  around which the optimal design changes from isostatic to redundant is 

called redundancy threshold herein. 

Figure 2 shows the optimal objective function values for the RBDO solutions with 𝛽𝑇 = 3 and 𝛽𝑇 = 4, as a 

function of 𝑝𝐿 . As can be observed, the total weight is not very sensitive to 𝑝𝐿 , as 𝑝𝐿  increases below the 

redundancy threshold. At the redundancy threshold, the optimal solution becomes hyperstatic and the weight starts 

to increase. For large values of 𝑝𝐿 , we note that the optimal solutions become independent of the target reliability. 

This suggests that when non-structural factors have large influence on system reliability the safety level is 

controlled by the epistemic uncertainties. 

Figure 1 – Six-bar truss with one loaded node. 
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3.2 Results for Risk Optimization 

Results for RO were computed for 𝑘𝐻𝐹 = 2 and considering several values of 𝑝𝐿 . Table 2 presents the results 

considering 𝑘 = 10 and 𝛼 = 5. Similar results were also obtained for 𝑘 = 20 and 𝛼 = 5. Analyzing the results in 

Table 2, we can divide the optimal solutions in three groups, as indicated in the 9 th line of the table. Group A, 

corresponding to small values of 𝑝𝐿 , is formed by isostatic optima; Group B, corresponding to intermediate values 

of 𝑝𝐿 , is formed by hyperstatic but non-redundant structures, since some bars do not have enough capacity to 

withstand load redistribution, in case of failure of a main bar; and Group C, corresponding to large values of 𝑝𝐿 , 

formed by hyperstatic redundant trusses. The extreme variants (A and C) are similar to that observed for RBDO.  

 

Table 2 - Optimal solutions for risk optimization, 𝑘 = 10, 𝛼 = 5. 

Design Variables 
Latent failure probability 

𝟎 5×10-7 10-6 5×10-6 10-5 5×10-5 10-4 5×10-4 10-3 5×10-3 10-2 5×10-2 

A1 (cm2) 31.71 31.50 31.82 31.76 31.53 4.67 1.36 4.82 2.45 3.70 23.58 25.96 

A2 (cm2) 0.00 0.00 0.00 0.00 0.00 27.41 30.81 27.40 29.12 28.11 23.58 25.74 

A3 (cm2) 0.00 0.00 0.00 0.00 0.00 27.41 30.81 27.40 29.12 28.11 23.58 25.74 

A4 (cm2) 31.71 31.50 31.82 31.76 31.53 3.71 1.24 5.00 2.51 3.74 23.57 25.96 

A5 (cm2) 0.00 0.00 0.00 0.00 0.00 38.76 43.58 38.75 41.18 39.76 33.35 36.39 

A6 (cm2) 44.84 44.55 45.00 44.91 44.59 5.88 1.61 6.48 3.54 5.05 33.34 36.72 

Weight (kg) 149.35 148.38 149.86 149.57 148.51 148.76 150.87 151.41 148.89 149.59 222.10 243.50 

CET 157.31 157.34 156.68 157.65 158.16 158.25 158.83 164.55 171.13 235.77 275.21 1063.21 

Group A A A A A B B B B B C C 

Type of system Iso Iso Iso Iso Iso Hyper Hyper Hyper Hyper Hyper Hyper Hyper 

𝛽𝑠𝑦𝑠 3.45 3.37 3.45 3.41 3.37 3.28 3.25 2.92 2.71 2.16 2.59 1.80 

𝛽𝑚𝑎𝑥3𝐵 ∞ 4.67 4.53 4.17 4.01 3.62 3.43 2.97 2.74 2.17 1.89 1.07 

 

The optimal system reliability indexes shown in Figure 3 help us understand why these three groups exist. 

Also, two limiting behavior curves are included in the figure to aid interpretation of results: the maximum 

reliability that an isostatic three-bar structure can achieve (𝛽𝑚𝑎𝑥3𝐵, eq. (18)); and the maximum reliability that the 

hyperstatic six-bar truss can achieve (𝛽𝑚𝑎𝑥6𝐵); both due to presence of epistemic uncertainty. 

In Figure 3 we observe that the optimal isostatic designs of Group A do not change as a function of 𝑝𝐿 . 

Hence, we can infer that 𝛽𝑠𝑦𝑠 for this group is mainly a function of the aleatory uncertainties. In the region 

corresponding to Group B, the optimal reliability asymptotically approaches the limiting value 𝛽𝑚𝑎𝑥3𝐵. Therefore, 

we note that the optimal designs are directly dependent or controlled by 𝑝𝐿 . Yet, in Group B the optimal designs 

are less reliable than 𝛽𝑚𝑎𝑥3𝐵, as they approach this curve from below. In the boundary between groups B and C 

there is a jump, where optimal system reliability becomes greater than 𝛽𝑚𝑎𝑥3𝐵. This occurs when the optimal 

Figure 2 – Optimal RBDO results as a function of 𝑝𝐿. 
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structure become redundant, as observed for RBDO. Hence, we can interpret that the optimal design becomes 

hyperstatic, and then redundant, to cope with the increasing effect of epistemic uncertainties. Finally, as 𝑝𝐿  

becomes very large, the epistemic uncertainties completely dominate system reliability, which asymptotically 

approaches the limiting curve 𝛽𝑚𝑎𝑥6𝐵. 

 The boundary between the optimal solutions in Groups A and B is called hyperstatic threshold. On the other 

hand, the boundary between the optimal solutions in Groups B and C is called redundancy threshold, as in RBDO. 

In Figure 3 we see that this point varies significantly with the failure cost multipliers 𝑘 and 𝛼. When 𝑘 changes 

from 10 to 20, the redundancy threshold moves to the left, making the hyperstatic redundant solutions occur for 

smaller values of 𝑝𝐿 . When 𝛼 changes from 5 to 10, the hyperstatic threshold also moves to the left. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4  Conclusions 

This paper addressed the study of the effects of epistemic uncertainties in the optimal structural design. The 

latent failure probability concept was employed in reliability-based and risk-based truss topology optimization. 

This concept represents the impacts of non-structural factors such as gross errors in design and manufacturing, 

human errors, operational abuse and unanticipated loading. Through a simple six-bar truss example, it is shown 

that optimal designs resulting from risk-based analysis can be divided in three groups. When the effect of epistemic 

uncertainties is negligible, the optimal solutions are isostatic structures. As the epistemic uncertainty increases, 

optimal solutions become hyperstatic and then redundant. The boundary between the isostatic and hyperstatic 

optimal topologies was called hyperstatic threshold, while the boundary between the hyperstatic and redundant 

solutions was called redundancy threshold. The results presented herein show something that was already 

recognized in practice: structural systems should be redundant to cope with epistemic uncertainty. Finally, the 

results show that the latent failure probability, despite being an idealized concept, is a simple tool to impose 

minimal redundancy in reliability-based and risk-based topology optimization. 
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Figure 3 - Optimal RO results as a function of 𝑝𝐿. 
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