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Abstract. The use of neural networks to address engineering problems is increasing considerably. A limitation
of using neural networks is the need for large amounts of data to fit nonlinear problems with acceptable accuracy.
An alternative to the purely data-driven approach is the physics-informed neural networks, which add physical
constraints that significantly reduce the amount of data needed to achieve acceptable accuracy. In this work, we
solve two simple heat conduction problems using PINNs, evaluating the complexity of different neural network
architectures. A direct comparison to the analytical solution proved the PINNs to be good solvers for the evaluated
partial differential equations. A fully connected neural network (FCN) handles the problem well for the steady-
state case. However, a gated recursive unit (GRU) architecture is needed to solve a transient problem. For both
problems, an architecture of 6 layers with 64 units each is sufficient to achieve good results.

Keywords: Physics-informed neural network (PINN), Heat conduction, Machine learning

1 Introduction

Machine Learning (ML) has been a topic of increasing interest in recent decades. According to Evsukoff [1],
this growth is related to the increasing amount of data being stored digitally instead of analogically, the increasing
processing power, the broader internet access, and new paradigms such as the multiple layers error propagation [2]
and deep neural networks [3].

Physics-Informed Neural Networks (PINN) are a particular category of ML where physical restrictions are
added to the loss function instead of a purely data-driven approach. According to Karniadakis et al. [4], numerical
discretization of partial differential equations (PDEs) is still complex and prohibitively expensive, while merely
data-driven machine learning may not find enough training data to achieve the required precision. In this context,
PINN can use available data and enforce the physical laws to improve the predictions of a neural network (NN).

In this work, we used NVIDIA Modulus 1 to solve heat transfer problems and to test the NN architecture’s
effectiveness in solving transient problems. According to Nvidia, Modulus is a neural network framework that
blends the power of physics in the form of governing partial differential equations (PDEs) with data to build high-
fidelity, parameterized surrogate models with near-real-time latency. Modulus trains its NN trying to satisfy the
PDEs and its boundary conditions. If the network can minimize this loss function, then it will, in effect, solve the
given differential equation [5].

2 Heat conduction problems

We tackle two cases in the present work. The cases are presented in increasing order of complexity:
• 2D Steady State Heat Transfer in a Solid;
• 1D Transient Heat Transfer in a Semi-Infinite Solid.

1https://developer.nvidia.com/modulus
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2.1 2D Steady State Heat Transfer in a Solid

The first case describes the 2D heat conduction in a thin rectangular plate or a long rectangular rod (Bergman
et al. [6]. Figure 1 shows the geometry schematic, where the rectangle’s sides and bottom surfaces are kept at a
temperature T1and the top surface is kept at a temperature T2, higher than T1.

Figure 1. Two-dimensional conduction in a thin rectangular plate. Adapted from Bergman et al. [6]

The governing equation for this problem is the two-dimensional, steady-state heat conduction with no gener-
ation and constant thermal conductivity for rectangular coordinates, which takes the following form:

∂2T
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and Dirichlet boundary conditions:

T (0, y) = T1, T (L, y) = T1, T (x, 0) = T1, T (x,W ) = T2 (2)

For this problem, L = H = 1m , T1 = 50◦C and T2 = 150◦C The analytical solution (Equations 3 and 4)
is used to create the validation domain. The first 100 terms of the summation are considered.
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2.2 1D Transient Heat Transfer in a Semi-Infinite Solid

The second case describes the 1D heat conduction in a semi-infinite solid from Bergman et al. [6]. This solid
extends to infinity in all but one direction and is characterized by a single identifiable surface (Figure 2).

Figure 2. Semi-infinite solid schematic and transient temperature distributions. Adapted from Bergman et al. [6]

The governing equation for this problem is the one-dimensional, transient heat conduction with no generation
and constant thermal conductivity for rectangular coordinates, which takes the following form:

1

α

∂T

∂t
− ∂2T

∂x2
= 0 (5)
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The initial condition is:

T (0, x) = Ti (6)

The boundary conditions are of the first type:

T (t, 0) = Ts, T (t,∞) = Ti (7)

Despite being an idealized geometry, Bergman et al. [6] highlights that the semi-infinite solid has several
practical applications. For our problem, L = 0.1m, Ts = 25◦C and Ti = 100◦C. The analytical solution
(Equation 8) is used to create the validation domain.

T (t, x)− Ts

Ti − Ts
= erf

(
x

2
√
αt

)
(8)

2.3 Physics-Informed NN Modeling

In the first problem, we tested four PINNs to model the problem. The difference between those PINNs is the
architecture, which followed the logic of n layers with 2n neurons each. The networks were fully connected, and
we kept all the other parameters the same; many of them were Modulus defaults:

Table 1. Summary of the PINN architecture for the first case.

Hyper-parameter Used

Solver Adam

Activation function Swish
Initial Learning Rate 10−3

Decay Type Exponential
Decay Rate 0.95

Number of Steps to Decay 8× 103

Maximum Steps 3× 105

Architecture n layers and 2n neurons

In Modulus, one must choose how many points she/he wants to sample in the geometry interior and on each
boundary. We choose 100 points in each boundary and 4000 points in the geometry interior. As aforementioned,
Modulus does not use external data in the loss function, it only tries to minimize the PDE residual; for this case:

L =
1

n

n∑
i

([
∂2

∂x2
+

∂2

∂y2

]
TPINN (xi, yi)

)2

(9)

The second problem adds a bit of complexity by introducing transient effects. Four fully connected PINNs
(FCN) were used to model the problem, but the results were unsatisfactory. We tried to increase the architec-
ture’s complexity to match the problem complexity. We tested four PINNs with recurrent neural networks (RNN)
architecture and four PINNs with gated recurrent unit (GRU) architecture, totalizing 16 PINNs.

For each architecture class, we tested four PINNs following the logic of n layers with 2n neurons each. We
kept all other parameters the same; many of them are Modulus defaults (Table 1). All layers of the RNN are
recursive, and a fixed number of 3 recursive layers are used in the GRU. Both GRU and RNN divided the time
domain into ten steps. For this case, we choose 50 points in each boundary and initial condition and 100 points in
the geometry interior. The loss is as follows:

L =
1

n

n∑
i

([
∂

∂t
+

∂2

∂x2

]
TPINN (ti, xi)

)2

(10)

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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3 Results

In this section, we present and discuss the main results. The criteria used to choose the best architecture for
each problem were the loss and the relative error of the validation domain.

3.1 2D Steady state heat transfer in a solid results

Table 2 presents the performance of each architecture tested. Figures 3 and 4 present the evolutions of the
loss function and of the validation domain error, respectively. For this case, the 6x64 PINN presented the best
results.

Table 2. Final loss and validation domain relative error for the first case.

Architecture Size Loss after 3× 105 steps Validation domain relative error

4x16 34.83 0.08361
5x32 21.39 0.06448
6x64 10.51 0.04698

7x128 33.95 0.04563

Figure 3. Loss for 2D Steady State
heat transfer in a solid

Figure 4. Validation domain error for 2D Steady State
heat transfer in a solid

Another interesting plot is shown in Figure 5 for the 6x64 PINN, where we compare the Modulus solution
to the analytical solution. It is possible to observe small differences in the majority of the domain (98.2% of the
domain has absolute differences smaller than 0.2◦C). The higher differences are present at (x, y) equal to (0,W/2)
and (L/2,W/2), due to the singularity in the boundary conditions. To speed convergence, higher weights were
given to the center (x = 0) and smaller eights were given as abs(x) → L/2 (close to the singularities).

Figure 5. Results for the 6x64 PINN
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3.2 1D Transient heat transfer in a semi-infinite solid results

Table 3 presents the performance of each architecture evaluated. Figures 6 to 11 presents the evolutions
of the loss function and of the validation domain relative error evolution for each architecture (FCN, RNN, and
GRU). It is worth noting that all cases had the same random seed to avoid initialization biases.

Table 3. Final loss and validation domain relative error for the second case.

Architecture
Loss after 3× 105 steps Validation domain relative error

FCN RNN GRU FCN RNN GRU

4x16 0.7492 0.03165 0.4127 0.1438 0.03952 0.03413

5x32 0.6209 0.184 0.08192 0.07279 0.02206 0.0161

6x64 0.02452 0.1918 0.01617 0.02215 0.01905 9.75E-03

7x128 0.01934 0.07261 0.05803 0.01331 0.01521 0.01746

Figure 6. Loss evolution for
the different FCNs

Figure 7. Validation Domain Relative Error
evolution for the different FCNs

Figure 8. Loss evolution for
the different RNNs

Figure 9. Validation Domain Relative Error
evolution for the different RNNs
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Figure 10. Loss evolution for
the different GRUs

Figure 11. Validation Domain Relative Error
evolution for the different GRUs

We compare Modulus prediction to the analytical solution for the three classes of PINNs using the 6x64 size.
Figure 12 presents the analytical solution to the problem. Figures 13, 14 and 15 presents the results obtained
for FCN, RNN, and GRU, respectively. GRU performs the best for the same network size, followed by RNN and
FCN. GRU presents the smallest loss and the smallest relative error in the validation domain. Figures 13, 14, and
15 show that the minimum and maximum differences decrease as we walk from FCN to GRU. Table 4 presents the
metrics used to quantify the differences. The FCN and the RNN could not eliminate differences in the region with
the steepest gradients.

Figure 12. Analytical solution for 1D Transient heat transfer in a semi-infinite solid. This image is a magnification
of the domain region with the steepest gradients.

Table 4. Metrics to compare the PINN classes.

Architecture Minimum Difference (◦C) Maximum Difference (◦C)
% of the domain with difference

smaller than 0.2◦C

FCN 6x64 -6.76 17.41 89.1%

RNN 6x64 -9.74 12.79 80.0%

GRU 6x64 -9.94 1.91 99.1%

It is possible to observe that there is a small gain when comparing FCN to RNN, but there are significant
improvements when changing to GRU.
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Figure 13. Results for the 6x64 FCN: a) Modulus Prediction; b) Difference. This image is a magnification of the
domain region with the steepest gradients.

Figure 14. Results for the 6x64 RNN: a) Modulus Prediction; b) Difference. This image is a magnification of the
domain region with the steepest gradients.

Figure 15. Results for the 6x64 GRU: a) Modulus Prediction; b) Difference. This image is a magnification of the
domain region with the steepest gradients.
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4 Conclusions

In this work, we solved two heat transfer problems with increasing complexity. In both cases, NVIDIA
Modulus proved to be a good solver. It is worth noting that the Modulus approach to solve PINNs does not need
data for forward problems. For steady-state problems, the conventional fully connected NN (FCN) proved to be
enough to achieve good precision. For transient problems, results suggest that more advanced NN classes/types
should be tested. The GRU PINN has the best results for the particular problem in this work. For the two problems,
a 6x64 PINN is an optimal architecture with no further improvement migrating to a 7x128 PINN.
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Foz do Iguaçu, Brazil, November 21-25, 2022

http://www.deeplearningbook.org
http://www.deeplearningbook.org

	Introduction
	Heat conduction problems
	2D Steady State Heat Transfer in a Solid
	1D Transient Heat Transfer in a Semi-Infinite Solid
	Physics-Informed NN Modeling

	Results
	2D Steady state heat transfer in a solid results
	1D Transient heat transfer in a semi-infinite solid results

	Conclusions

