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Abstract. Foam injection is an oil recovery technique with great potential to be applied in the Brazillian Pre-salt
reservoirs. It consists of injecting gas and surfactant solution into the reservoir to control the gas mobility, avoid the
fingering formation, and improve sweep efficiency. Investigating the foam flow in porous media is challenging due
to foams’ non-Newtonian behavior. That is why most mathematical studies on this subject consider Newtonian
models. In the literature, there is a non-Newtonian model describing the foam displacement validated through
laboratory experiments. In the present work, we numerically verified that this model possesses a traveling wave
solution i.e., a stable-shape profile displacing in space with constant velocity. Such a solution is similar to ones
appearing in Newtonian models. We validate our results by comparing them to the experimental data found in the
literature. The numerical method is based on a finite difference Crank-Nicolson scheme with the Newton-Raphson
method for time step evolution.

Keywords: Foam flow in porous media, Traveling waves, Non-Newtonian fluid.

1 Introduction

There is a consistent search for more efficient and less harmful to the environment oil recovery methods. One
of these methods consists of controlled injection of water, gas, and surfactant into the reservoir (SAG), leading to
the generation of foam, more sweep efficiency, and higher oil recovery factor, Lake et al. [1]. The mentioned tech-
nique is also known as foam injection and is an adaptation of the water-alternating-gas (WAG) recovery method.

Mathematical models describe the dynamics of foam flow in porous media through a system of two Partial
Differential Equations (PDEs), composed of the Rapoport-Leas equation and a balance law for the foam texture
– see Ma et al. [2], Hematpur et al. [3]. There are different approaches for modeling the gas mobility reduction
due to the presence of foam. Hirasaki and Lawson [4] proposed a formula describing the foamed gas’s apparent
viscosity, which depends on the gas velocity, i.e., foam flow has a non-Newtonian behavior. Such behavior makes
both analytical and numerical investigation of the foam flow in porous media a challenging task.

Many laboratory experiments yield saturation profiles with the unchanging shape and moving with a constant
velocity, see Simjoo et al. [5], Simjoo and Zitha [6], Janssen et al. [7]. This fact motivated many researchers to
look for traveling wave solutions for the foam flow models, see Ashoori et al. [8], Lozano et al. [9], Zavala et al.
[10], Cedro et al. [11]. However, they assumed that the fluid was Newtonian to find traveling wave solutions
analytically.

In this work, we propose to study a non-Newtonian foam model by Chen et al. [12], which uses foamed gas
viscosity defined by Hirasaki and Lawson [4]. We show a traveling wave solution using numerical simulations.
Once this kind of result is possible to be observed, it can indicate the viability of finding an analytical solution for
that foam model.

This paper is structured as follows. In Section 2, we present the foam displacement model, including the non-
Newtonian gas viscosity. In Section 3, we describe the numerical scheme used in our simulations. Section 4 shows
our numerical experiment configuration, results, and validation with the experimental data. Finally, in Section 4,
we summarize our conclusions and discussion.
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2 Foam displacement mathematical model

We consider a one-dimensional transient mechanistic foam model composed of two partial differential equa-
tions. The first one is the Rapport-Leas equation, a conservation law for the water mass in porous media. The
second one is a foam texture balance equation.

∂

∂t
(ϕSw) +

∂uw

∂x
= 0 ,

∂

∂t
(ϕSgnD) +

∂

∂x
(ugnD) = ϕSgΦ ,

(1)

where ϕ is medium porosity (considered constant), Sw and Sg are the phase saturations, uw and ug are the super-
ficial phase velocities – the subscripts w and g denote the aqueous and gaseous phases, respectively. The foam
texture nf is the volumetric bubble density. For simplicity, we adopt the dimensionless variable nD = nf/nmax,
where nmax is a reference value for nf . We consider a fully saturated medium, i.e., Sw + Sg = 1. Finally, Φ
describes the bubbles creation and destruction mechanism as detailed in Section 2.1.

The velocities are given by

uw = ufw + kλrgfw
dPc

dx
with u = uw + ug , (2)

where u is the total superficial velocity (assumed to be constant) and Pc is the capillary pressure due to the inter-
action between different phases with the porous matrix.

Following the standard definitions of fractional flow theory (see Buckley and Leverett [13], Lake [14]), the
phase mobilities λw and λg and the fractional flow functions fw and fg are:

λrw =
krw
µw

, λrg =
krg
µg

and λ = λw + λg , (3)

fw =
λw

λ
, fg =

λg

λ
⇒ fw + fg = 1 , (4)

where krw and krg are the water and gas relative permeabilities, µw and µg are the phase viscosities, and λ is the
total mobility. In the presence of foam, we denote the gas’s apparent viscosity as µf , as described in Section 2.1.

2.1 Population balance model

In the literature, there are different approaches for modeling the source term Φ, the relative permeability
functions krw, and krg, the capillary pressure Pc and the foamed gas viscosity µf , e.g., Hematpur et al. [3], Ashoori
et al. [15], Kovscek et al. [16], Kam and Rossen [17], Thorat and Bruining [18], Zitha [19]. In this work, we adopt
the definitions presented by Chen et al. [12].

The relative permeability model is based on Corey [20]:

krw =


0 , 0 ≤ Sw < Swc

k0rw

(
Sw − Swc

1− Swc

)nw

, Swc ≤ Sw ≤ 1
, (5)

krg =

 k0rg

(
Sf

1− Swc

)ng

, 0 ≤ Sg ≤ 1− Swc

0 , 1− Swc < Sg ≤ 1

, Sf = XfSg , Sg = 1− Sw , (6)

where Swc is the residual water saturation, and k0rw, k0rg, nw, ng are the model’s parameters. We assume there is
a fraction Xt of the gaseous phase, which is immobile in the porous medium, while only the gaseous fraction Xf

flows (Kovscek et al. [16]). Then we denote Sf as the flowing gas saturation. That trapped gas fraction is described
as:

Xt = Xt,max

(
βnt

1 + βnt

)
, Xt +Xf = 1 , nt ≈ nf , (7)

where Xt,max is the maximum trapped foam fraction, β is a trapping parameter, and nt is the trapped foam texture.
The capillary pressure function follows the model proposed by Leverett [21], with parameters fitted to experiments
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of Kovscek et al. [16]:

Pc = σwg

√
ϕ

k

(
0.022

Sw − 0.15

)0.2

, (8)

where σwg is the interfacial tension between water and gas. The foamed gas apparent viscosity is given by Hirasaki
and Lawson [4]:

µf = µ0
g + α

nf

v
1/3
g

with vg =
ug

ϕSg
, (9)

where µ0
g is the gas viscosity in the absence of foam, and vg is the gas interstitial velocity. That expression model

a non-Newtonian shear-thinning foam’s behavior once its viscosity decreases with increasing velocity. Finally, the
source term Φ is defined as:

Φ = rg − rc,

rg = k01(1− nω
D)vwv

1
3
g , rc = k0−1

(
Pc

P *
c − Pc

)2

vgnf , ω = 3 ,

(10)

where k01 and k0−1 are constants, and P *
c is the limiting capillary pressure, above which foam abruptly coalesces.

In Chen et al. [12], Kovscek et al. [16] the authors consider P *
c depending on the surfactant concentration Cs.

This work considers that surfactant concentration is far above the critical micelle concentration. In this case, there
is enough surfactant for foam generation and stability, yielding small Cs variations that do not affect the foam
behavior, see Kile and Chiou [22]. Therefore, we consider P *

c is constant.

3 Numerical scheme

This section presents details of the numerical simulation for the system (1). We employ a Reaction-Convection-
Diffusion simulator (RCD) (see Lambert et al. [23] for details), which implements a finite difference scheme for
solving the following system of equations:

∂

∂t
G(U) +

∂

∂x
F (U) =

∂

∂x

(
B(U)

∂U

∂x

)
+R(U) , (11)

where U represents the problem variables. The functions G, F , B and R have the following discretization schemes:

∂

∂t
G(U) ≈ Gn+1

m −Gn
m

∆t
, (12)

∂

∂x
F (U) ≈ α

Fn+1
m+1 − Fn+1

m−1

2∆x
+ (1− α)

Fn
m+1 − Fn

m−1

2∆x
, (13)

∂

∂x

(
B(U)

∂U

∂x

)
≈ α

(Bn+1
m+1 +Bn+1

m )(Un+1
m+1 − Un+1

m )− (Bn+1
m +Bn+1

m−1)(U
n+1
m − Un+1

m−1)

2(∆x)2

+(1− α)
(Bn

m+1 +Bn
m)(Un

m+1 − Un
m)− (Bn

m +Bn
m−1)(U

n
m − Un

m−1)

2(∆x)2

, (14)

R ≈ αRn+1
m + (1− α)Rn

m , (15)

where m and n denote the spatial and temporal discretizations, respectively, and ∆x and ∆t are spatial and tempo-
ral step sizes. Notice that, temporal discretization is fully implicit for α = 1 and explicit for α = 0. In this work,
we adopt α = 1/2, also known as Crank and Nicolson [24] scheme (see LeVeque [25]).

By replacing (12)-(15) in (11), and grouping implicit and explicit terms in F and Y, we obtain:

Gn+1
m

∆t
+

α

2∆x
(Fn+1

m+1 − Fn+1
m−1)︸ ︷︷ ︸

Fm(Un+1
m−1, U

n+1
m , Un+1

m+1)

=
Gn

m

∆t
+

α− 1

2∆x
(Fn

m+1 − Fn
m−1)︸ ︷︷ ︸

Ym(Un)

. (16)

For each meshpoint m, we define:
Gm = Fm − Ym = 0 (17)
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and numerically find the solution of the global system G(Un+1) = 0. Since G, F , B e R are non-linear functions,
the roots of G are obtained through the Newton–Raphson method.

For the foam flow, substituting eqs. (2)-(4) into the system (1) and considering that the velocity u and porosity
ϕ are constants, we rewrite system (1) as:

∂Sw

∂t
+

u

ϕ

∂fw
∂x

= −k

ϕ

∂

∂x

((
fw

krg
µg

dPc

dSw

)
∂Sw

∂x

)
,

∂

∂t
(SgnD) +

u

ϕ

∂

∂x
(fgnD) =

k

ϕ

∂

∂x

((
fw

krg
µg

dPc

dSw
nD

)
∂Sw

∂x

)
+ SgΦ .

(18)

This system fits the general form give in eq. (11) with the following matrices:

U =

Sw

nD

 , G(U) =

 Sw

SgnD

 , F (U) =
u

ϕ

 fw

fgnD

 , R(U) =

 0

SgΦ

 , (19)

B(U) =
k

ϕ


−fw

krg
µg

dPc

dSw
+ ϵSw

0

fw
krg
µg

dPc

dSw
nD ϵnD

 . (20)

We need to deal with the implicit dependence between apparent foam viscosity µf and the gas velocity vg in
eq. (9). One can replace relations from eqs. (2)-(4) in eq. (9) to obtain a cubic expression of µf and explicitly
write µf as function of Sw, nD and dPc/dx – see Pereira and Chapiro [26]. In the numerical simulation, we kept
that single derivative one step behind in time, so the model still fits the general form of eq. (11).

3.1 Boundary and initial conditions

Furthermore, we adopt a Dirichlet boundary condition on the left side to simulate a fixed saturation injection
value and a homogeneous Neumann condition on the right side to simulate an infinite domain outlet condition.
The initial solution is set as the following Riemann Problem:

U = (Sw, nD) =

{
(S−

w , n−
D) , x ≤ 0

(S+
w , n+

D) , x > 0
. (21)

These boundary and initial condition were used as they help identifying traveling wave profiles, see Lozano et al.
[9], Zavala et al. [10], Lozano et al. [27] for details.

In order to match the experimental data from Chen et al. [12], we need the initial conditions in (21). The
values S−

w and S+
w were estimated from the reported experimental observations in Chen et al. [12]. As proved

for other models, the boundary conditions for the stable traveling wave solution need to satisfy local equilibrium
conditions, as described by Ashoori et al. [8], Lozano et al. [9], Zavala et al. [10], Cedro et al. [11], i.e. the source
term Φ = 0 at (S−

w , n−
D) and at (S+

w , n+
D). Substituting these boundary conditions into (10), we obtain:

k01(1− (n±
D)3)vw(S

±
w , n±

D)vg(S
±
w , n±

D)
1
3 − k0−1

(
Pc(S

±
w )

P *
c − Pc(S

±
w )

)2

vg(S
±
w , n±

D)n±
Dnmax = 0 . (22)

From the physical point of view, the local equilibrium condition means the situation when the foam creation rate
coincides with the foam coalescence. We solved (22) numerically to obtain the values of n+

D and n−
D.

4 Matching laboratory experiment

In this section, we numerically reproduce the experiments reported by Chen et al. [12] and show the existence
of a traveling wave solution for the model proposed by the authors. We consider a model by Chen et al. [12] with
the same parameter values, except for Swc and P *

c , (see Table 1). The only parameter we set different from
Chen et al. [12] was the connate water saturation Swc value. We observe that the connate water saturation Swc

significantly affects the wavefront velocity. Considering the adversity in obtaining residual saturations in the core-
flood porous media experiments, we set the Swc value that better fits the experimental average wavefront velocity,
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Table 1. Model parameters for foam flow simulation.

Two-phase flow Population balance
Parameter Value Parameter Value

k 3 · 10−13 m2 k01 1.5 · 1015 s
1
3 m

13
3

ϕ 0.18 k0−1 10m−1

nw 3 P *
c 3 · 104 Pa

k0rw 0.7 α 7.4 · 10−18 Pa s
2
3 m

10
3

ng 3 Xt,max 0.78

k0rg 1.0 nmax 1012 m−13

Swc 0.2797

µw 1.0 · 10−3 Pa · s
µg 1.8 · 10−5 Pa · s

Swc = 0.2797. The constant value of P *
c is estimated from Kovscek et al. [16] for high values of surfactant

concentration.
The values of S−

w and S+
w were estimated from experimental observations reported by Chen et al. [12]. The

values of n−
D and n+

D were calculated using eq. (22):

(S−
w , n−

D) = (0.541245, 0.82495200) ,

(S+
w , n+

D) = (0.999000, 0.99999697) .
(23)

Figure 1 presents our numerical results together with the experimental data from Chen et al. [12]. As one
can observe, the simulated saturation curves present a shock-like profile that does not change shape over time,
with boundary conditions defined by the constant values S−

w , and S+
w . There is a good match between numerical

and experimental data; however, the experimental results present a smoother water saturation profile. The location
of both wavefronts is close to each other, indicating they have similar wave velocities. The wavefront velocity
of the numerical simulation is estimated using the space position of the water saturation profile at the fixed value
Sw = 0.8 (gray dashed line in Fig. 1); the average wavefront velocity is v = 1.442501 × 10−4 m/s.
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Figure 1. Experimental water saturation profiles from Chen et al. [12] compared to numerical simulations. The
dashed gray line stands for the height Sw = 0.8 at which experimental wavefront velocity is calculated.

To measure the distance between the numerical solution and experimental results, we use a mean percentage
squared error (MPSE) defined as:

MPSE =

√√√√ 1

L

∫ L

0

(
S̃w(x)− p1(x)

p1(x)

)2

dx , p1(x) ≈ Sw(x) , (24)
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where S̃w is the numerical solution and p1 is the linear interpolation of experimental water saturation Sw. Figure 2
shows that MPSE’s most significant values are close to the wavefront. Notice that the maximum relative error
is approximately 6% and tends to stabilize over time, i.e., the simulated and experimental profiles approach each
other over time.
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Figure 2. Percentage squared errors between numerical results and experimental data for water saturatio.

5 Conclusions

In this work, we numerically investigate the existence of traveling wave solutions in a non-Newtonian foam
model. We obtained a numerical simulation for that model, and the results are in good agreement with experimental
data. In particular, the simulated wavefront velocity coincides with the experimental one. The simulation results
indicate the existence of a traveling wave solution for the studied model. These results may encourage the search
for analytical solutions in the form of traveling waves for non-Newtonian models describing the foam flow in
porous media.
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Foz do Iguaçu, Brazil, November 21-25, 2022


	Introduction
	Foam displacement mathematical model
	Population balance model

	Numerical scheme
	Boundary and initial conditions

	Matching laboratory experiment
	Conclusions

