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Abstract. The foam became interesting for many applications, including the oil industry, due to its capacity to
control gas mobility, which is specifically relevant in fractured reservoirs. In the present work, we use a simplified
bubble population balance model to describe foam displacement in porous media. We approach the fractured
structure of the porous medium in a three-layer configuration, where the middle layer possesses a small width and
high permeability. Numerical investigation using Foam Displacement Simulator (FOSSIL) points out the existence
of a stable traveling wave water saturation profile evidencing the applicability of the foam injection to control gas
mobility in fractured reservoirs.
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1 Introduction

There is a growing interest in studying the foam displacement in porous media, from an environmental (soil
remediation) as shown in Bertin et al. [1], or industrial (oil recovery) point of view as in Hematpur et al. [2].
Several models describe the behavior of foam in porous media, see Ashoori et al. [3], Kovscek et al. [4], Kam et
al. [5]. Within these models are local equilibrium models and population balance models see Hematpur et al. [2].
We are interested in the latter, where the foam texture is modeled using the mass balance equation. These models
are more realistic as they consider physical aspects of foam creation and destruction.

There are some studies of multiphase flow in porous media by layers; see Leij et al. [6], Guerrero et al.[7],
Worthy et al.[8], Carr et al. [9] and Kumar et al. [10]. Some of them, i.e., Guerrero et al. [7] use Laplace transform
to estimate the analytical solutions; others Kumar et al. [10] consider fractures between the layers and study the
multiphase flow when the fracture thickness tends to zero. In the case of foam displacement, one can find articles,
such as Bertin et al. [1], where artificial media with different permeabilities but the same porosity in each layer
are studied for soil remediation. The behavior of multiphase flow with the presence of foam is explored in Li et
al. [11] in the context of microfluidics. In Rosman et al. [12], the velocities and saturations of water in two-layer
porous media with different permeabilities, but equal porosity, are analyzed from the computational point of view.

Using the linear kinetic model Ashoori et al. [3] in the previous work by Castrillon et al. [13], the problem of
foam flow in two-layer media is investigated using traveling waves; the velocity of this wave was found. This paper
proposes an extension of this study to the three-layer case using the bubble balance population foam model from
Zitha et al. [14] with simplifying hypothesis of Newtonian flow as in Zavala et al. [15]. We use 2D simulations to
show the existence of the traveling wave solution profile.

This paper is structured as follows. Section 2 presents the simplified version of the bubble population model,
see [14]. In section 3, we describe Foam Displacement Simulator (FOSSIL) (see De Paula et al. [16]), and the
main numerical results. In section 4, we summarize the conclusions, highlighting the importance of the study of
foam flow in porous media.
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2 Model

Based on De Paula [16], and Castrillon et al. [13], we consider the following system of partial differential
equations, which describes the two-dimensional foam displacement in porous media ϕ ∂

∂tSw +∇ · uw = 0,

ϕ ∂
∂t (nDSg) +∇ · (ugnD) = ϕSgΦ ,

(1)

where ϕ is the porosity, Sw is the water saturation, uw is the water velocity, nD is the foam texture, Sg is the gas
saturation, ug is the gas velocity, and Φ represents the foam generation and coalescence. The first equation in (1)
is a conservation law, while the second equation in (1) is a population balance equation considering u = uw + ug
as Darcy’s velocity

uw = −λw∇Pw, (2)

where λw is the mobility of water phase and Pw is the pressure in the water phase. The two-dimensional domain
for eq. (1) is the rectangle Ω := (0, L) × (−d, d3) (see Fig.1), where L is the maximum length in the axis x and
the height z is in (−d, d3). We solve the problem in three layers of different permeability: the first z ∈ (−d, d1)
with permeability k = k1 and porosity ϕ, the second with z ∈ (d1, d2) permeability k = k2, porosity ϕ; and the
third with z ∈ (d2, d3) k = k3, porosity ϕ.

Figure 1. Schematic representation of a three-layered porous medium as a domain Ω := (0, L)× (−d, d3); where,
ki is the permeabilities of the layer i, respectively.

We use the stochastic population model given in Zitha et al.[14] with the simplification proposed in Zavala et
al. [15] to define the foam generation source term as:

Φ = (Kc +Kg)(n
LE
D − nD), (3)

which depends on foam texture in local equilibrium nLE
D (Sw) given by:

nLE
D (Sw) =

Kg

Kc +Kg
, (4)

where Kg and Kc are the coalescence coefficients given in Zitha et al. [17]. Considering the fractional flow
function theory from Ashoori et al. [3], Persoff et al.[18], Zitha et al. [19], and Zavala et al.[15],

λw = k
krw

µw
, λg = k

krg

µg
, fw =

λw

λw + λg
, fg =

λg

λw + λg
, (5)

where λ is a modified pore-size distribution parameter, λw and λg are the mobilities of water and gas phases; µw
and µg are the viscosity parameters for water and gas phases, fw and fg are fractional flows for water and gas
phases. As the system is entirely saturated we consider that Sw + Sg = 1 and fw + fg = 1. The partial mobilities
and fractional flow functions can be defined as:

krw(Sw) =


0, 0 ≤ Swi

≤ Swc,

0.75

(
Sw − Swc

1− Swc − Sgr

)λ

, Swc < Sw ≤ 1,
(6)

k0rg(Sw) =

 0.94

(
1− Sw − Sgr

1− Swc − Sgr

)(3λ+2)/λ

, 0 ≤ Sw < 1− Sgr,

0, 1− Sgr ≤ Swi
≤ 1.

(7)
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Foz do Iguaçu, Brazil, November 21-25, 2022



A. J. Castrillón Vásquez, G. Chapiro

Table 1. Parameter values for the problem of three layers.

Symbol Value Parameter

Swc 0.2 [-] connate water saturation

Sgr 0.0 [-] residual gas saturation

µw 10−3 [Pa s] water viscosity

µ0
g 2 · 10−5 [Pa s] gas viscosity in absence of foam

k1 1 · 10−12 [m2] permeability of medium in layer 1

k2 1 · 10−11 [m2] permeability of medium in layer 2

k3 1 · 10−12 [m2] permeability of medium in layer 3

nmax 2.5 · 1011 [m−3] maximum foam texture

u 2.31 · 10−5 [ms−1] average total velocity

KC 0 [s−1] bubble coalescence coefficient

Kg 0.1 [s−1] bubble generation coefficient

λ 5 [-] pore-size distribution parameter

ϕ 0.21 [-] porosity

S+
wi

0.99[-] inicial water saturation for the layer i, i = 1, 2, 3

S−
wi

0.63[-] injected water saturation for the layer i, i = 1, 2, 3

σgm 30 · 10−3 [N/m] gas-water interfacial tension

α 5.8 · 10−16 [Pa s2/3 m10/3] viscosity proportionality constant

r 5 · 10−6[m] mean pore radius

D 0.02 [m] constant to define the thickness of the layers

krg(Sw, nD) =
k0rg(Sw)

MRF (nD)
, (8)

the gas mobility reduction factor (MRF = µf/µ
0
g), where µf is the viscosity of the flowing gas and µ0

g the
viscosity in the absence of foam, could be seen as a linear function of foam texture:

MRF (nD) = βnmaxnD + 1. (9)

where
β =

α

(ug/ϕSg))
d
µ0
g

. (10)

The capillary-pressure Pc is a function depending on Sw, and on the gas-water surface tension σ, on the porosity
of medium ϕ and permeability k is defined as:

Pc = pc,0 · γ ·
(
Sw − Swc

0.5− Swc

)−1/λ

, (11)

considering pc,0 = 2 (σgw/r) cosθ as the entry capillarity pressure, γ is the proportionality coefficient, σgw is the
surface tension between water and gas, θ is the contact angle, and r is the effective pore radius. All the parameters
mentioned so here, can be seen in Table (1).

3 Numerical Results

In this section, we show the results obtained for a 2D model using Foam Displacement Simulator (FOSSIL),
whose detailed description can be found in De Paula et al. [16]. To solve the problem composed of the first
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equation in (1) and eq.(2), FOSSIL uses the conservative mixed finite element method proposed in Kurganov et
al. [20]. To solve the second equation of (1) (which corresponds to the foam transport problem), FOSSIL uses the
conservative method KNP introduced in Kurganov et al. [21], which is an extension of the finite volume method
presented in Kurgarov et al. [22].

To obtain the solutions of the problem (1) we use 2D simulations with the following conditions in the domain
Ω (depicted in Fig. 2): At x = 0, we consider a constant velocity for all z, and the water saturation Sw equal to
the injection condition Sw = S−

w . At x = L, we consider the Newmann type boundary condition ∂xSw = 0. The
permeability of the medium k is a matrix of dimension m× nz , where m is the number of cells on the horizontal
axis, and nz is the same on the vertical axis (we consider nz multiple of 21). It is defined as:

kij =


k1, if j ∈ [1, (3/7)nz] ∩ Z,

k2, if j ∈ [(10/21)nz, (11/21)nz] ∩ Z,

k3, if j ∈ [(4/7)nz, nz] ∩ Z.

(12)

A graphical representation of how permeability is defined over the entire domain is shown in Fig. 2, where ∆z
represents the cell width in z direction, ∆x is the cell width in x direction. For this experiment, |d2 − d3| =
|−d− d1| = D and |d2 − d1| = (1/10)D, where D is given in Table 1.

Figure 2. Numerical domain for the three-layer problem.

Figure 3 shows the behavior of the water saturation in the whole domain at three different times. Simulation
results in Fig. 3 indicate the presence of the stable traveling wave saturation profile. This behavior is similar to one
described in Zavala et al. [15] for the one-dimensional case.

Figure 3. Stable traveling water saturation profile obtained through two-dimensional numerical simulations at
2500 s (upper plot), 3750 s (middle plot) and 5000 s (lower plot).

To calculate the position of the water saturation wavefront, shown in Fig. 4, we modify the algorithm proposed
in Castrillon et al. [13] given below. The position xfront

i with i = 1, 2, 3 is calculated using:

xfront
1 = mean

i=1···(9/21)nz

xfront
strip i, (13)

xfront
2 = mean

i=(10/21)nz···(11/21)nz

xfront
strip i, (14)

xfront
3 = mean

i=(12/21)nz···nz

xfront
strip i. (15)
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Using equations (13)-(15) and finite differences, we calculate the wave velocity in each layer i in a similar way as
it is done in Castrillon et al. [13]:

vi,k =
xfront
i,k − xfront

i,k−1

∆t
. (16)

Figures 4 and 5b show that the wave in the middle layer moves faster than in the other two layers for times shorter

Figure 4. Position on the horizontal axis of the water saturation front xfront
i in each of the i-layers.

than 2000 s. After this time, the saturation fronts move at the same velocity. Figure 6 presents saturation profiles
obtained numerically at different times starting with t = 2500 s. In this figure, we also show the displaced initial
profile comparing Sw + v∆t with Sw(t + ∆t), where v is the stable velocity in different layers. We estimate
the velocity v using the moving average with groups of 300 points obtained with a numerical approximation of
the traveling wave velocity. The final value of v is the the arithmetic average of the regularized velocities from
t = 3000 s until t = 10.000 s. As one can observe, after the stabilization time (see Fig. 5b and 5a), the water
saturation profiles move with constant velocity v without changing the wave shape.

The proximity of the curves Sw +v∆t with Sw(t+∆t) in Fig. 6, can be quantified using the L2 distance, see
results in Table 2. As we can observe, the distance between the profiles does not increase over time, corroborating
the existence of a traveling wave solution connecting S−

w to S+
w .

(a) Velocities for each layer (b) Standard deviation of speeds

Figure 5. Velocities vi in the layer i; and standard deviation of each velocity SD(vi) in the layer i. Simulated
using the moving average for groups of 240 data in the 2D-model.

4 Conclusions

In this work, we investigated the foam displacement in three-layer stratified porous media using the bubble
population model. Using the in-house numerical simulator in the two-dimensional configuration, we conclude that
the water saturation profile behaves as a stable traveling wave solution. As a highly permeable middle layer can
approach fracture, our results indicate that the foam displacement in the porous media containing fractures presents
a behavior similar to that observed in the homogeneous case.
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(a) Layer 1 (b) Layer 2

(c) Layer 3

Figure 6. Comparison of the profiles using the calculated velocity v = 6.8e × 10−5m/s. The dotted curves are
generated by FOSSIL at times t0 = 2500s, t1 = 3000s, t2 = 3500s, t3 = 4000s, and t4 = 4500s. Sw0 is
the profile generated by FOSSIL at time 2500s. (a) In layer 1, (b) layer 2 and (c) layer 3. The distance between
Sw0

+ v∆t and Sw(t) are shown in Table 2.

Table 2. Distance between Sw(2500) + v∆t and Sw(2500 + ∆t) in the layer i.

∆t Layer 1 Layer 2 Layer 3

500 s 8.3e-3 3e-3 8.3e-3

1000 s 2.02e-3 4.8e-3 2.08e-3

1500 s 1.6e-3 1.3e-3 1.7e-3

2000 s 2e-3 2.3e-3 2.02e-3
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