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Abstract. The aim of this work is to analyze the influence of a discontinuous unilateral elastic base and an initial 

geometrical imperfection on the nonlinear vibrations of a simply supported cylindrical panel. The cylindrical panel 

is described by the nonlinear shallow shell theory of Donnell and discretized by the Galerkin method, using a 

reduced order model which is obtained by a perturbation method. The discontinuous elastic base model is described 

by a Heaviside function and the unilateral contact is defined by the Signum function. The results show the dynamic 

analysis of the cylindrical panel through the backbone curves, bifurcation diagrams, phase portraits and resonance 

curves to understanding the influence of the discontinuous unilateral elastic base and the initial geometrical 

imperfection of the cylindrical panel. An efficient modal solution with two degree-of-freedom is sufficient to 

describe the nonlinear softening behavior of the cylindrical panel with a discontinuous unilateral elastic base. The 

influence of the unilateral elastic base and the initial geometrical imperfection on the dynamic stability of the 

cylindrical panel is demonstrated in the resonance curves, phase planes, Poincaré mappings and bifurcation 

diagrams, where it is possible to identify important changes in the stable and unstable regions of the resonance 

curves when compared with a cylindrical panel with a discontinuous bilateral elastic base. 

Keywords: cylindrical panel, elastic base, unilateral contact, initial geometrical imperfection.  

1  Introduction 

Cylindrical panels, or open circular cylindrical shells, are structural elements which have applications in many 

engineering fields as civil, aerospatial and mechanical engineering, among others. Generally, to prescribe their 

behavior and stability under static and dynamic loads, the mathematical model must consider their geometric 

nonlinearities. Reviews of the literature involving cylindrical panels subjected a different hypothesis about their 

deformation field, reduced order models, applied loads, boundary condition, coupled problems, among so many 

issues are presented in [1, 2]. The vibration study for cylindrical shells and panels supported on an elastic 

foundation has been investigated by several authors, which investigated its influence on the natural frequency for 

different shell geometries, initial stress condition, and foundation parameters [3-5]. In a geometrical nonlinear 

scenario, [6-8] analyzed the nonlinear dynamic and buckling response of panels supported on an elastic base. The 

first studies on unilateral foundation can be attributed to Weitsman [9]. The analyzes are for an Euler-Bernoulli 

beam, supported on a unilateral elastic base, considering the reaction only for compression when subjected to a 

concentrated mobile load. Modern studies on nonlinear frequency in beams [10, 11] and plates/panels [12-14] 

supported on unilateral foundation various parameters of the elastic base are found in the literature. 

The aim of this work is to analyze the influence of a discontinuous unilateral elastic base and an initial geometrical 

imperfection on the nonlinear vibrations of a simply supported cylindrical panel. The cylindrical panel is described 

by the nonlinear shallow shell theory of Donnell and discretized by the Galerkin method, using a reduced order 

model which is obtained by a perturbation method. 



Nonlinear resonance curves of a cylindrical panel with unilateral contact of a discontinuous elastic base 

CILAMCE-2022 

Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  
Foz do Iguaçu, Brazil, November 21-25, 2022 

2  Problem formulation  

An imperfect simply supported thin-walled circular cylindrical panel with radius R, thickness h, axial length ax, 

circumferential length a, and open angle [=a /R] is considered, as shown in Fig. 1a. Its material is defined as 

linear elastic, isotropic, and homogenous with Young’s modulus E, Poisson’s coefficient  and density . In Fig. 

1a are represented the displacement fields in the axial, u, circumferential, v, and transversal, w directions, related 

to the cylindrical coordinates x, θ, and z, respectively. Considering the Donnell’s nonlinear shallow shell theory, 

the nonlinear equilibrium equation and the compatibility equation of the cylindrical panel are given in terms of the 

transversal displacement field w and the Airy’s stress function f: 
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where 0 is the natural frequency of cylindrical panel, 1 is the viscous damping factor, D[=Eh3/12(1-2)] is the 

flexural stiffness, w0 is an initial geometrical imperfection, p(t) and pk are the time-dependent transversal load and 

the reaction of the discontinuous unilateral elastic base described respectively by: 

0 0 sin sin .imp

x

m x n
w W h

a

    
=    

  
 

( ) ( )sin sin cos .L L

x

m x n
p t P t

a

 


   
=    

  
       ( ),

, 2

1 sgn
.

2
k w P xx x

w w
p K w K w H H

R





  − 
= + +  

  
 (2) 

where PL is the magnitude of transversal load, L is the frequency of excitation, Kw and KP are the Winkler and 

Pasternak stiffness parameters, respectively; the functions Hx[=H(x-1)-H(x-2)] and H[=H(-3)-H(-4)] are 

Heaviside functions which describes the discontinuous elastic base, in the longitudinal direction in the region 

defined by 0< 1<2<L, Fig. 1b, and in the circumferential direction in the region defined by 0< 3<4<, Fig. 1c; 

and, sgn is the Signum function which controls the unilateral contact of elastic base, i.e., for positive values of w, 

the reaction pk becomes zero. For a bilateral contact of a discontinuous elastic base, the term (1-sgn w)/2 in eq. (2) 

is replaced by 1. 

 

 
 

(a) (b) (c) 

Figure 1. (a) Geometry and displacement field for a cylindrical panel. (b) Elastic foundation in the longitudinal 

direction in the region defined by 0< 1,2<L. (c) Elastic foundation in the circumferential direction in the region 

defined by 0< 3,4<. 

Airy’s stress function f is obtained analytically for a particular transversal displacement field w. According to 

Morais and Silva [15], a consistent transversal displacement field is derived from a perturbation method, obtaining, 
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for a simply supported cylindrical panel, the general modal solution: 
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Returning to the nonlinear cylindrical equilibrium equation, with the obtained f and the particular w, it is discretized 

by Galerkin method, obtaining a set of nonlinear second order differential equations in terms of modal amplitudes 

c1,ij(t) and c2,(2+6)(2+6)(t). 

3  Numerical results 

Consider a cylindrical panel with the geometrical and physical parameters: R=8.333 m, h=0.01 m, ax =1 m, a =1 

m, E =210 GPa, = and =7850 kg/m³. In this case, the lowest natural frequency is 437.92 rad/s occurring to 

wave numbers (m, n) = (1, 1). Also, it is considered a Winkler base with Kw = 46.15 MN/m³ centered in the 

cylindrical panel (1=0.4, 2=0.6, 3=0.048 and 4=0.072), without Pasternack base KP = 0 and an initial geometrical 

imperfection in the shape of the fundamental vibration mode with amplitude equal to 0.05h.  

  

(a) (b) 

Figure 2. (a) Frequency-amplitude relation for a perfect cylindrical panel with a discontinuous bilateral elastic 

base, considering different reduced-order models. 2DOF: c1,11, c2,22; 3DOF: 2DOF, c2,28; 4DOF: 3DOF, c2,82; 5DOF: 

2DOF, c1,13, c1,31, c1,33; 6DOF: 5DOF, c2,28; 7DOF: 6DOF, c2,82. (b) Comparison of resonance curves for an imperfect 

cylindrical panel, considering the contact of elastic base (2DOF system, PL = 2.5 kN/m², 1 = 0.01). 

Figure 2a displays the frequency-amplitude relation, obtained by the shooting method, for a perfect cylindrical 

panel in contact with a discontinuous bilateral elastic base. Different modal solutions of w are considered for the 

analysis, with the aim of determining the number of degrees of freedom (DOF) necessary for the discretization of 

the transverse displacement field, w, to guarantee the correct representation of the non-linear behavior of the 

cylindrical panel. It can be seen through the analysis of Fig. 2a that the modal solution with 2 DOF is enough to 

describe the nonlinear behavior of the cylindrical panel, describing the softening nonlinearity of the backbone 

curve up to amplitudes around the thickness panel. Considering a time-dependent transversal load with magnitude 

PL = 2.5 kN/m² and damping 1 = 0.01, the resonances curves of an imperfect cylindrical panel are obtained by the 

brute force method, under the hypothesis of bilateral or unilateral contact, as shown in Fig. 2b. The curves 
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demonstrate how the amplitude varies with the excitation frequency. The resonance peaks are shifted to the right 

of L/0 = 1 (resonance region of the perfect cylindrical panel) due to increasing of natural frequencies for both 

cases of elastic base (470.29 rad/s – unilateral elastic base; 518.47 rad/s – bilateral elastic case). It is observed in 

Fig. 2b that, for the same transversal load, the resonance curve of the panel with a bilateral elastic base has an 

almost linear behavior while the resonance curve of panel with unilateral elastic base has a significant softening 

behavior, that is, there is a loss of stiffness in the structure with increasing of the excitation frequency, features 

dynamical jumps, bifurcation points and paths with quasi-periodic response (marked in red color). 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 
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Figure 3. (a) Bifurcation diagram for cylindrical panels |C1,11max(t)|/h and L/0. (b) Bifurcation diagram for 

cylindrical panels |C2,11max(t)|/h and L/0. (c) 1º region with bifurcation points |C1,11max(t)|/h. (d) 1º region with 

bifurcation points |C2,11max(t)|/h. (e) 2º region with bifurcation points |C1,11max(t)|/h. (f) 2º region with bifurcation 

points |C2,11max(t)|/h. (g) 3º region with bifurcation points |C1,11max(t)|/h. (h) 3º region with bifurcation points 

|C2,11max(t)|/h.      

Figure 3 uses the MatCont, a Matlab software continuation package, for the study of numerical continuation of 

limit cycles and their bifurcations in the nonlinear system of equations for the same time-dependent load of Fig. 

2b. Figs. 3a and 3b illustrate the resonance curves for three types of cylindrical panels: without elastic base (green 

color), with unilateral elastic base (blue color) and with bilateral elastic base (black color). The resonance curves 

of the cylindrical perfect panel without elastic base show a bifurcation point LPC (Limit Point of Cycles) increasing 

the excitation frequency. Then, the resonance curve becomes unstable (red curve) until it finds another LPC 

bifurcation point, for higher values of vibration amplitude. Soon after, the vibration amplitude shows a smooth 

decay with increasing excitation frequency, in a stable region, with no bifurcation points. The diagrams for modes 

|C1,11max(t)|/h and |C2,11max(t)|/h show the same behavior, Figs. 3a and 3b, but the amplitudes for |C1,11max(t)|/h are 

greater, as it is the mode that has the greatest influence on the nonlinear dynamic behavior of cylindrical panel. 

The imperfect cylindrical panel with unilateral elastic base (blue color in Figs. 3a and 3b), is marked by several 

bifurcation points, Figs. 3c-3h are approximation of these regions. From Figs. 3a and 3b, increasing the excitation 

frequency, it is found a bifurcation point LPC, following an unstable path (red curve), with a region where it was 

observed changes in the panel’s stability, in addition to several Neimark-Sacker (NS) bifurcation points and one 

bifurcation point LPC, as presented in Figs. 3c and 3d. After this region, the vibration amplitude decreases and 

frequency increases continuously for the amplitude |C1,11max(t)|/h, for the amplitude |C2,11max(t)|/h the amplitude 

shows a slight decay, followed by an increase and then decreases continuously as the frequency increases, 

bifurcation points are still found, first two NS points, Figs. 3e and 3f, and after an unstable path there are several 

nearby bifurcation points, among them, NS, LPC and BPC, represented prominently in Figs. 3g and 3h. In 

accordance with Fig. 2b, the imperfect cylindrical panel with bilateral elastic base (black curves) there aren't 

bifurcation points. The resonance peaks are shifted to the right compared to panels without elastic base and with 

one-sided elastic base.  

For the resonance curve of the imperfect cylindrical panel with unilateral elastic base, Figs. 2b and 3a, plotted in 

blue, the dynamic behavior and instability of the cylindrical panel were studied through phase plane and Poincaré 

sections by the fourth-order Runge-Kutta method. Figure 4 investigates some nonlinear responses found in the 

resonance zone of Figs. 2b and 3a. Figure 4a shows the phase plane and Poincaré section for the ratio L/0 = 1.02. 

In accordance with Figs. 2b and 3a, for this frequency ratio there are two amplitude values |C1,11max(t)|/h=0.293 

and |C1,11max(t)|/h=0.7463, with a stable periodic orbit with a period T. Figures 4b and 4c present the response 

for the frequency ratio L/0 = 1.0272, with views in the C1,11/h x (dC1,11/dt)/h plane and a 3D view - C1,11/h x 

(dC1,11/dt)/h x C2,11/h, respectively. The analysis of these figures presents a Poincaré map, describing a closed 
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orbit, characterizes a quasi-periodic response which they are representative of a Neimark-Sacker region. 

  
(a) (b) 

 

 

 
(c) 

 

Figure 4. Phase-plane and Poincaré section for L/0 = 1.0200. (b) Phase-plane and Poincaré section for 

L/0 = 1.0272. (c) Phase-plane and Poincaré section for L/0 = 1.0272 – 3D. 

4  Conclusions 

In this work, an analytical model for an imperfect cylindrical panel in contact with a discontinuous unilateral elastic 

base was derived, using a perturbation technique to obtain the modal solution for transversal displacement field. 

The influence of the unilateral elastic base on the backbone were investigated, the results indicated that the curves 

show nonlinearity of the softening type and the modal solution with 2 DOF is enough to describe the nonlinear 

behavior of the cylindrical panel. Resonances curves were studied, the initial geometrical imperfection and 

unilateral elastic base showed a strong influence on the results. Bifurcation diagrams were investigated, showing 

unstable regions and bifurcation points. Poincaré mappings and phase planes were analyzed, based on the response 

of the resonance curve of the cylindrical panel with unilateral elastic base. The numerical results clarify the strong 

influence of the unilateral elastic base on the panel nonlinear oscillations and dynamic stability, which was affected 

by several new bifurcation points, specially Neimark-Sacker bifurcation points. 
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