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Abstract. In this study, the problem of free vibrations in functionally graded moderately thick nanoplates is 

addressed. The numerical models are obtained employing the quasi-3D plate theory and the approximation spaces 

are obtained according to the G/XFEM with PU's with regularity �� , � = 1,2. The choice to use the cited 

approximation spaces is related to their regularity, which is extremely relevant in non-local dynamic elastic 

problems. In this sense, the use of approximation spaces obtained with �� FEM-Lagrange produces significant 

differences in the nanoscale result which does not occur in classical or local elasticity. In the case studies, the 

following effects on the first resonance frequency are analyzed: increase in the nanoplate size, distribution of the 

biphasic material, and increment of the nanoscale parameter. As a complementary result, the effect of the regularity 

of the approximation spaces in the verification of the stiffness softening phenomenon is analyzed. The normalized 

frequencies resulting from those obtained with high order FEM-Lagrange, a semi-analytic solution, and the 

Hermitian elements (H-FEM) ��, � = 1,2. 

Keywords: G/XFEM, quasi 3D nano-plates, non-local elasticity. 

1  Introduction 

The study of micro and nanostructures and their applications in science and engineering has been of improved 

in importance over the last two decades due to the super properties observed such as the increase in stiffness, the 

significant increase in thermal, and electrical conductivity, and the high stiffness/mass ratio. Recent studies in this 

area were carried out by Arash et al. [1], in the simulation of a gas sensor using the problem of wave propagation 

in graphene sheets. In Kahrobaiy et al. [2], the authors simulate the resonance frequency and sensitivity of a 

microcantilever in atomic force microscopes using non-classical continuum mechanics theory.  

Recently studies involving Functionally Graded Materials (FGM), see Bever and Duwez [3], address issues 

of bending, free vibrations, and lateral stability on thin and moderately thick nanoplates modeled with different 

kinematic theories and using non-local elasticity (see Eringen [4]) were performed by Aghababaei and Reddy [5], 

Daneshmehr et al. [6], Sobhy M. [7], Nami and Janghorban [8], among others. 

In this work, the performance of numerical models obtained with the quasi-3D kinematic theory (see, Neves 

et al. [9]) and the high regularity approximation spaces obtained using G/XFEM (see, Garcia and Rossi, [10]) are 

analyzed in the approach to the free vibration problems in moderately thick functionally graded nanoplates. The 

material properties, in each representative volume (RV), are obtained by the Mori-Tanaka homogenization method, 

the mixing rule, and a power-law as in Neves et al. [9].  
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2   Free vibration in quasi 3D functionally graded nanoplates 

In this section, the problem of free vibrations of thick and moderately thick nanoplates, Figure 1, modeled with 

the quasi-3D theory is addressed as in Neves et al. [9]. The functions that describe the displacement fields are 

defined in the equations Eq. (1)-(3).  
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Discrete formulation for the quasi 3D functionally graded nanoplate 

The discrete formulation is obtained by the Galerkin Finite Element Method where the fields that describe the 

components of displacements in an element "e" are defined by Eq.(4)-(10), using the shape functions shown in 

Garcia and Rossi [10].  
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Figure 1: Simply supported functionally graded nanoplate. 
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In Eq. (10) Ne is the number of enriched nodes of the element and p is the polynomial order of the enrichment 

functions. The discrete formulation of normal strains for points inside an element is shown in a generic way by 

Eq. (12). 
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In this equation, the generic field functions 	
, �
 represent the components of vector functions �
���,  ���, 

�
��� , ���, and �
���, ��� respectively to the index � = 0,1,3. The deformation matrix �

���

 is shown in matrix 

notation in Eq (12), being the operators  , !, and "# defined as in Garcia and Rossi [10]. 
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The gradients of the scalar and vector functions as well the components of shear strain and normal strain in the 

thickness direction are described in Eq. (12)-(17). In Eq. (12), $% = &$ �. � $(⁄ $ �. � $*⁄ +
and J is the Jacobian 

matrix. In Eq. (14), ∇-��� = ∇�, ∇-�.� = ∇�, and ∇-�/� = ∇�. 
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The constitutive equation is described by Eq. (18), for the k-th layer, using the vectors of internal forces “0�” 

according to Neves et al. [9]. On the other hand, the Galerkin integral shown in Eq. (23) is obtained from Eqs. (4)-

(22). In this approach the mass inertia moments 1�� , � = 0,1,2,3,4,6 are shown in Eq. (22). On the other hand, the 

essential boundary conditions are weakly imposed by the external penalty method where the penalty multiplier 

4� � = 0,1,2,3,4,6 are shown in Eq. (22), being 5 the penalty coefficient. 
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In Eq. (18), the constitutive submatrices, 6�
���, ��

�7�, 8�
�9�, :�

�;�, <�
�=�

, and >�
�?�

, � = 1, . . ,4, @ = 1, … ,5, C =
1, … ,5, D = 1, … ,5, E = 1, … ,3, F = 1, that make up the constitutive matrix Ck, are obtained in a generic way by 

Eq. (19)-(21), from the constitutive matrices  G� , �H, 8H, :H, <H, and >H described in Neves et al. [9].  
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In Eq. (23), U is the global vector of displacement parameters, N is the number of degrees of freedom of the 

numerical mode, I is the natural frequency and J is the nanoscale coefficient. In this equation, K and KL are the 

stiffness and penalty matrices and MN and MON are local and non-local mass matrices, respectively. 
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3  Numerical Results 

Numerical results are referred to the plate shown in Figure 1, with aspect ratios P Q =⁄ 1 and P ℎ⁄ = 20. 

Constituent materials and their physical properties are shown in Table 1.  

 

Table 1: Physical properties of materials. 

Materials Properties 

( )E GPa  ( )3/Kg mρ  
ν  

Si3N4 348.86 2370 0.32 

SUS-300 201.4 8166 0.32 

 

Numerical results for all examples presented are obtained by the strategies indicated in Table 2. 

 

Table 2:  Numerical strategies obtained by “p” homogeneous version. 

model Element Type Num. Elements p NDOF 

A Q4 10 10×  D = 20, E = 20 3600 

B Q4 5 5×  3 3240 

C Q4 5 5×  3 3240 

D Q16 7 7×  3 3600 

E Q4 5 5×  5 3840 

 

In Table 2:  

A. Semi-analytic solution obtained by bi-harmonic Navier modes and Bubnov-Galerkin Method. 

B. Approximation space with C2 regularity obtained by the “p” homogeneous version conforming G/XFEM.  

C. Approximation space with C4 regularity obtained by the “p” homogeneous version conforming G/XFEM. 

D. Approximation space obtained by Q16 Lagrange Finite Elements with C0 regularity. 

E. Approximation space obtained by Hermite Finite Elements with C2 regularity.  
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Influence of dimensions and the graduation of biphasic material on resonant frequency 

In this study, the convergence of the first resonant frequency is analyzed using the ratio ST = ION IN⁄  (ION ,IN, 

non-local frequency and local frequency respectively) with the increment of the nanoplate dimensions and the 

influence of the functionally graded of the biphasic material on the first normalized resonant frequency I =
I.ℎUVW XW⁄  ( VW and XW are the volumetric mass and the Young modulus of the ceramic material) for the B strategy 

approximation spaces. Figure 2(a) shows the convergence of the ST  curves obtained with non-local elasticity with 

increasing plate dimensions as predicted by Eringen C. [4]. On the other hand,  Figure 2(b) shows a decay of the 

stiffness produced by the increasing of the power-law exponent “n” (see, Neves et al. [9]) and by the stiffness-

softening phenomenon produced by the increasing of J.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Simulation of the Stiffness-Softening phenomenon 

The stiffness softening phenomenon is verified by a relaxation of stiffness, denoted by the frequency decay, 

when the effects produced by the nanoscale are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, the effect of the smoothness of the approximation spaces (strategies B, C, D, E) is verified by 

analyzing the decay of the ninetieth normalized frequency I = IY�ℎUVW XW⁄   with the increment of the nanoscale 

factor μ. The effect of smoothness is analyzed by the relative error ZT = |I\ − I^| |I^|⁄ , where I^ is obtained 

by strategy A and I\  by the above-cited strategies. The stiffness-softening results are shown for strategies A 

through E in Figura 3(a) where a more accentuated decay is observed in the �I × J� curves of strategies A, B, D, 

 
(a) 

 
(b) 

 

Figure 2: a) normalized resonant frequency variation vs. coplanar dimensions, b) normalized resonant 

frequency vs. power "n". 

 
(a) 

 

 
(b) 

Figura 3: a) normalized frequency vs. nanoscale factor; b) relative error vs. nanoscale factor. 
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and E than that obtained with strategy C. On the other hand, in Figura 3(b), shows a superior convergence of 

strategies B, C, and E with respect to strategy D (FEM C0). The superiority of the results is due to the incorporation 

of the gradients of the shape functions in the non-local mass matrix. 

4  Conclusions 

The mechanical behavior of functionally graded moderately thick nanoplates was numerically investigated 

by using the almost 3D kinematic model with an extensible normal and by approximation spaces obtained with 

the homogeneous p version of G/XFEM with regularity ��, � = 2,4,. The convergence results confirm the non-

local theory of elasticity of Eringen (1983). The stiffness-softening phenomenon was observed and represented by 

the variation of the nanoscale coefficient. Finally, the effect of regularity is relevant to the results at the nanoscale. 

In this context, the results obtained with G/XFEM were significantly superior to those obtained by other 

approximation spaces, such as the FEM-Lagrange, and slightly superior to those obtained with HFEM. 
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