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Abstract. The type of structure most used for the storage of grains are the cylindrical metallic silos, being slender 

structures in shell, which have great capacity to withstand the axial loads and the lateral pressures that are 

submitted. This paper aims to develop a low-dimensional model, with a reduced number of degrees of freedom, 

capable of analyzing the behavior of orthotropic and longitudinally stiffened silos subjected to static and dynamic 

axisymmetric actions. The nonlinear Sanders-Koiter theory is used to model the silo and Chebyshev polynomials 

are used to simulate the cantilever at the base and the free end in which these types of structures are commonly 

built. Grain pressures are determined according to the Janssen model, including the Heaviside function to simulate 

charging, and discharging inside the silo. In addition, the Heaviside function is also applied to the kinetic energy 

and the natural frequency of the system, to compose the variation of mass and damping generated by the grains 

over time. The motion equations are obtained by applying Hamilton's Principle and the Rayleigh-Ritz method and 

using the 4th order Runge-Kutta method, the maximum axial and transverse displacements during charging, and 

discharging are found, noting that an increase occurs when compared to the static values of grain storage, which 

generates greater efforts being applied to the silo structure. 
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1  Introduction 

The main objectives of grain storage are to maintain the quality of production, avoid large waste and provide 

regulation of the internal market. A substantial portion of grain storage is conducted in silos, with cylindrical 

metallic silos being the most used for this purpose. Structurally, cylindrical silos are defined as cylindrical shells, 

which have a great capacity to resist axial loads and lateral pressures, in addition to being relatively quick to build 

and easy to manufacture. To better understand the behavior of silos, Rotter and Sadowski [1] bring an analysis of 

the linear axisymmetric bending of orthotropic cylindrical shells, modeling the shell through Donnell's linear 

theory and investigating the stresses that arise in silo walls due to grain storage. Freitas [2] presents a theoretical 

and experimental study of grain pressures in flat-bottom cylindrical silos with a low height/diameter ratio, 

emphasizing the comparative analysis of the main theories and standards codes of grain pressures, considering 

that, for static pressures, the analytical theories of Janssen, Airy, Reimbert and Bischara. As most silos are built 

with stiffeners present in the structure, the stability of cylindrical metallic silos with corrugated walls and 

longitudinal stiffeners are studied by Iwicki et al. [3], determining the critical load of silos through nonlinear 

dynamic analysis and comparing the results obtained with the analytically predicted by the European standard 

code Eurocode 3. 

Thus, the objective of the present work is to develop a low-dimensional dynamic model (few degrees of 

freedom) of an orthotropic cylindrical silo with externally fixed longitudinal stiffeners, capable of representing the 

charging and discharging behavior of the grains and the static pressures that these grains exert in the silo during 

the storage process, investigating, in a transient analysis, the variations of the maximum displacements and the 

maximum internal efforts that arise in the silo. In the mathematical formulation of the silo, the nonlinear Sanders-
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Koiter theory is considered to describe the deformation field and changes in curvature of the mean surface of the 

slender silo and the orthotropic material considerations can describe the effects of the corrugate walls, leading a 

simple discrete model to evaluate the behavior of the silo in a pre-design scenario. 

2  Mathematical formulation 

It is considered a circular cylindrical shell of length L, average radius R, thickness h and with externally fixed 

longitudinal stiffeners that are separated from each other by a uniform distance ds and with a center of gravity 

positioned at a distance es from the mid-surface of the shell. The axial, circumferential and radial coordinates of 

the shell are given, respectively, by x, θ and z, where the corresponding displacement fields are described by u, v 

and w, as illustrated in Figs. 1a,b. 

 

Figure 1. (a) Geometry and displacement fields of the shell, (b) distribution of stiffeners and (c) loading applied 

to the cylindrical shell. 

The strain fields εx, εθ, and γxθ and the changes in curvature χx, χθ, and χxθ of a point on the mid-surface of the 

shell are given, according to the Sanders-Koiter theory, by: 
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The relations between the stresses and deformations fields of the cylindrical shell, considering a plane stress 

state and a homogeneous, elastic, linear and orthotropic material, are defined according to the constitutive matrix: 
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         Where σ̅x, σ̅θ, and σ̅xθ are, respectively, the normal stresses and the shear stress at any point in the shell 𝐶𝑖𝑗 

(i, j = 1, ... ,3) are the coefficients of the elastic constitutive matrix of the orthotropic material given by: 
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          Where Ex, Eθ, and Gxθ are the longitudinal, circumferential, and shear modulus of elasticity, respectively; 

and, υxθ and υθx are the Poisson coefficients of the orthotropic shell. For orthotropic materials, it must be guaranteed 

that C12 = C21, where the equality condition υθx Ex= υxθ Eθ must be satisfied. It is important to highlight in this article 
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that the main orientation of the material coincides with the x and θ directions of the cylindrical shell in Figs. 1a,b. 

To determine the nonlinear equations of motion of the silo, a perfect cylindrical shell with grains is considered, 

generating an internal lateral pressure ph and a tangential pressure to the surface of the shell pw, which vary 

according to the height of stored grains, as shown in Fig. 1c. The internal pressures in the structure due to the 

stored grains are defined according to Janssen's theory [4], known as the elementary layer method. The static 

horizontal pressure ph and the static frictional pressure pw of the grains on the silo wall are given by: 
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         Where ρg is the density of the stored grain, μ is the coefficient of friction between the grain and the silo wall, 

A is the cross-sectional area of the silo, Per is the perimeter of the silo cross-section, and Ks is the pressure ratio 

horizontal and vertical pressure of the silo. 

In addition to the static storage loads, silos are also subject to the charging/discharging effects of the grains. 

To simulate these effects, this work considers the dynamic horizontal pressure of the grains as shown: 
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          Where H(  ) is the Heaviside function and the term Lf varies with time for the charging process, eq. (6), or 

to simulate the discharge action, eq. (7). 
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Being t the time and ε the charging/discharging speed given in m/s. This velocity is established by making 

the relation with the mass flow of the grains, based on the analytical formulation of Hagen-Berveloo [5]: 
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         Where �̇�o is the exit velocity of the grains, given in kg/s, g is the acceleration due to gravity and Do is the 

diameter of the exit hole. In this way, the velocity ε is found by establishing the velocity in m/s equivalent to the 

loading or unloading in kg/s found in the Hagen-Beverloo equation. 

Once the loads acting on the system are established, the nonlinear equations of motion are determined from 

the energy functionals of the system and, later, applying Hamilton's principle to the Lagrangian of the problem, 

which is defined as the difference between the energy kinetic T and the total potential energy Π. The kinetic energy 

T of the system is described by: 
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         Where the first integral of the kinetic energy is related to the kinetic energy of the shell and the stiffeners, 

where �̇�, �̇� and �̇� are the axial, circumferential and radial velocities of the silo, respectively, and ρeq is the 

equivalent density of the structure that consider the total mass of cylindrical shell and stiffeners. The second 

integral of the kinetic energy is due to the grain mass M (mass per unit lateral area of the cylinder, given in kg/m²) 

which varies over time to account the loading/unloading effects of the grains according to the internal Heaviside 

function. 

The total potential energy is defined as the difference between the internal deformation, eqs. (10) and (11), 

energy of the system and the work done by the external loads, eq. (12).  
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Considering the system as a non-conservative system, eq. (13) describes the virtual work of viscous damping 

dissipative forces. 
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Where ζ is the viscous damping coefficient and ω0(t) is the lowest natural frequency of the shell in radians 

per second. In this work, the natural frequency of the system varies with time, since the total mass of the system 

(shell, stiffeners and grains) varies with time in the grain charging/discharging process. 

It is observed that the free-fixed boundary condition is usually used in the design of the silo structural system, 

being clamped at the bottom (x=0) and free at the top (x=L). To satisfy the boundary conditions, consider the 

following modal expansions for the displacement fields u, v and w: 
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         Where η=x/L, 𝑇𝑚
∗ (η) = Tm(2η-1), Tm is the nth order of the first kind Chebyshev polynomial [6] and Um,n (t) , 

Vm,n (t)  and Wm,n (t) are the modal amplitudes of the displacement fields u, v and w, respectively. 

The equilibrium equations of the system are obtained by initially applying Hamilton's principle, given by: 
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And then, applying the fundamental lemma of variational calculus, the equilibrium equations are obtained, 

which can be represented by: 
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         Where U is the vector of displacement fields, �̇�  the vector of velocity fields and R the vector of dissipative 

forces. So, substituting a chosen displacement, eq. (14), into eq. (16), a discretized system with (Mu+Mv+Mw)xN 

nonlinear second-order differential equations are obtained. It is important to notice that, due to the mass of grain 

to vary in time, this system of discretized differential equation has time-varying coefficients. The 4-th order Runge-

Kutta method is used to obtain the system response over time. 

3  Numerical Results 

A cylindrical silo filled with soybeans is considered, with the bottom clamped and the top free, with a length 

L = 24 m, thickness of h = 0.01 m and radius R = 4 m. The longitudinal stiffeners are equally spaced in 0.62 m and 

they have a square cross section with 0.05 m. Soybean grains have density ρg = 800 kg/m³, lateral pressure 

coefficient Ks = 0.63 and friction coefficient with the silo wall μ = 0.38 [7]. 
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         To validate the analytical model proposed for the structure of the silo, Table 1 presents the maximum 

transverse displacement, normalized by the shell thickness, obtained in the present work for different modal 

expansions of the displacement field (12 DOF – MU=MV=MW=4, N=0; e, 15 DOF – MU=MV=MW=5, N=0) and 

different considerations of the orthotropic material. Then, the obtained results are compared with those obtained 

from the finite element method, using the commercial software Abaqus with a previously tested finite element 

mesh that guarantees the convergence of the results provided by the software. Setting the Poisson ratio at 

υx=υx=0.30 and the longitudinal modulus of elasticity at Ex =200 GPa, and, varying the modulus of elasticity in 

Eθ, the low-dimensional model results present with a difference, relative to the Abaqus results, less than 8%, when 

a solution with 12 DOF was used, and less than 6% when a modal expansion with 15 DOF was used. The results 

presented in Table 1 were considered satisfactory for the developed low-dimensional model. 

Table 1. Maximum normalized transverse displacements of the silo, with orthotropic properties, filled with 

soybeans. 

Ex/Eθ 

Maximum transverse displacement Difference (%) 

Present work –  

12 DOF 

Present work –  

15 DOF 
Abaqus 

Present work –  

12 DOF 

Present work –  

15 DOF 

2,00 0,141 0,144 0,152 7,65 5,93 

1,50 0,108 0,110 0,115 6,74 4,96 

1,25 0,091 0,093 0,096 5,18 3,36 

0,80 0,062 0,063 0,063 1,13 0,87 

0,67 0,053 0,055 0,053 0,58 2,69 

0,50 0,043 0,044 0,042 1,93 4,29 

 

Then, using the same geometry of the silo described and using the model with 12 GDF, a transient analysis 

of the axial and transverse displacements and the efforts was conducted, for the complete charge and discharge of 

the silo, for two orthotropy relations. The values of the displacements found were normalized in relation to the 

thickness of the shell and the results over time were obtained at a point where the values are maximum, being for 

L = 24 m in the axial displacements and L = 6 m in the transverse displacements. 

         Initially, for discharging of the silo, it was considered the exit hole diameter of 1/4 of the silo diameter, which 

represents a complete discharging in 96 seconds (represented by the vertical dashed line in Figs. 2-5). From the 

results indicated in Fig. 2(a,b), an increase in the axial and transverse displacements can be seen in relation to the 

values found for the static storage (represented by the horizontal dotted lines), right at the beginning of the 

discharge. For the axial displacements (Fig. 2(a)), the two cases of orthotropy present similar values and behavior, 

presenting high vibrations when the discharging starts. For transversal displacements (Fig. 2(b)), the orthotropy 

ratio has a greater effect on the results, leading the displacements up to three times higher at the beginning of 

discharging for the ratio Ex/Eθ = 2. In Figs. 3 (a,b), the internal membrane Nx (= ∫ �̅�𝑥𝑑𝑧) and bending Mx 

(= ∫ �̅�𝑥𝑧𝑑𝑧) resultants over time at the bottom of the silo, normalized with the values obtained in the static storage, 

are obtained. For these two internal resultants, it is observed that the orthotropy does not have a representative 

influence at the beginning of the discharging process, amplifying Nx and Mx internal resultants in 40% and 60%, 

respectively, when compared with the static values. 

When the silo is charging, it was considered a total time of 96 seconds for complete filling. From the results 

indicated in Figs. 4 (a,b), a large vibration can be seen in the initial time for the axial (Fig. 4(a)) and transversal 

(Fig. 4(b)) displacements. It is important to notice that the silo presents a variation between axial elongation and 

shortening, as shown in Fig. 4 (a). In Figs. 5 (a,b), it can be seen that an envelope of forces resulting from the 

vibration of the silo, in which traction and compression of the Nx and inversion of the Mx occur in the initial time, 

until they stabilize in the statics results. This behavior was not observed in the discharging process. 
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Figure 2. Time response of (a) axial and (b) transversal displacements considering the discharging of the silo. 

  

Figure 3. Time response of axial (a) membrane and (b) bending internal resultants considering the discharging of 

the silo. 

  

Figure 4. Time response of (a) axial and (b) transversal displacements considering the charging of the silo. 
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Figure 5. Time response of axial (a) membrane and (b) bending internal resultants considering the charging of 

the silo. 

4  Conclusions 

The nonlinear Sanders-Koiter theory is used to develop a low-dimensional model of an orthotropic and 

longitudinally stiffened silo. The nonlinear equations of motion are obtained from the Lagrangian of the system, 

in which the Chebyshev polynomials were used to satisfy the clamped-free boundary conditions of the silo. The 

consideration of the charging/discharging of the soybeans were inserted in the kinetic energy and in the load’s 

work to represent their variation along the time. A numerical validation was conducted comparing the obtained 

results with a model developed from the finite element method, in which it was found that the model with 12 DOF 

are satisfactory to represent the behavior of the silo. From this, a transient analysis, obtained by the 4-th order 

Runge-Kutta method, of the axial and transversal displacements and internal membrane and bending in the axial 

direction during charging/discharging of the silo, was conducted, in which it was observed that there is an 

amplification of these effects. The low-dimensional model derived for a stiffened orthotropic cylindrical silo can 

analyze the nonlinear behavior under static and dynamic axisymmetric actions in a pre-design scenario. 
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