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Abstract. Plane-wave decomposition is a recently developed technique in the field of acoustics that stems from
an approximation in the inverse spatial tri-dimensional Fourier transform so that it considers that the sound field
is represented by the superposition of plane waves traveling in well-defined directions. The calculations for the
technique involve the solution of an ill-posed matrix equation, requiring a regularized solution for the least squares
problem. This paper will show the implementation of the plane wave decomposition using Tikhonov regularization
in the context of a simulated and a measured impedance tube. The classical L-curve algorithm and a fixed-point
algorithm for the calculation of the regularization parameter were investigated and compared with the goal of
defining which technique produces the least error in this scenario. The reconstructions of the transfer functions
in both the simulated case and the measured case were realised, with the fixed-point algorithm displaying an
advantage over the L-curve with respect to reconstruction errors in both scenarios.

Keywords: room acoustics, inverse problems, plane wave decomposition, virtual microphone array, sound field
reconstruction

1 Introduction

The wavenumber approach is a technique that allows to decompose a sound field in components represented
by plane waves, from pressure or transfer function measurements of different points in space. The method, initially
proposed by Nolan [1], relies on a discretization of a spherical spatial Fourier transform, which in turn leads to an
ill-posed matrix equation. The non-existence of an inverse matrix makes so that a regularization is needed to find an
approximate solution. An interesting case to test the technique is the impedance tube. Because of its dimensions,
an impedance tube can be considered (inside a certain frequency range) as only having a plane wave emitted by
the speaker and a plane wave reflected by an absorbing sample or rigid cap. Furthermore, the impedance tube has
a limited amount of positions in which a microphone can sample the sound field. Thus, this paper will explore the
possibility of the reconstruction of the transfer functions of the tube using the wavenumber approach. Moreover,
a comparison between the reconstruction errors of two regularization parameter techniques (the L-curve algorithm
[2] and the fixed point algorithm [3, 4]) was done.

2 Theoretical Fundamentals

This section presents concepts, ideas and techniques that are useful to understand the contents of this paper.
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2.1 Plane-wave decomposition and the wavenumber spectrum

Plane-wave decomposition is a technique that stems from the discretization of a spherical inverse Fourier
transform. According to Nolan [1], the spherical Fourier transform is

p(rm) =

+∞∫∫∫
−∞

P (k)e−j⟨k,r⟩ dk, (1)

where p(rm) ∈ C is the sound pressure at a spatial position rm ∈ R3, k ∈ R3 is the wavenumber vector, and
P (k) ∈ C is the wavenumber spectrum. Notice that ⟨k, r⟩ denotes the inner product between r and k. The
wavenumber spectrum P (k) as a complex quantity and can be written as

P (k) = |P (k)| ej ϕ(k), (2)

where |P (k)| is the absolute value and ϕ(k) are the modulus and the phase of the complex value P (k).
The first hypothesis that Nolan [1] presents to derive eq. (1) further is that ∥k∥2 = k2x + k2y + k2z such

that ∥k∥2 ≥ k2x + k2y , which means that no evanescent waves i.e. waves that do not radiate to the far field are
present. Equation (1) can be written in spherical coordinates through the following changes of variables: xm =
r sin(γ) cos(ξ), ym = r sin(γ) sin(ξ), zm = r cos(γ), kx = k sin(θ) cos(ϕ), ky = k sin(θ) sin(ϕ), kz = k cos(θ);
which leads to eq. (3)

p(rm) =

+∞∫
0

2π∫
0

π∫
0

P (k)e−j k r (sin(γ) sin(θ) cos(ϕ−ξ)+cos(θ) cos(γ)) k2 sin(θ) dk dθ dϕ, (3)

where p(rm) = p(r, γ, ξ) in the spherical coordinates of the space and P (k) = P (k, θ, ϕ) in the spherical coor-
dinates of the k-space (Remark 2). At this moment, the sound field can be considered as produced by a pure-tone
with a single excitation frequency f0, which according to Nolan [1] implies that propagating waves are all ex-
isting in the surface of a radiation sphere in the wavenumber domain. This radiation sphere has radius equal to
k0 = (2πf0)/c,
where k0 is the radius of the radiation sphere, f0 is the pure-tone frequency, and c is the speed of sound. In that
case, Nolan [1] asserts that the sound field in the wavenumber domain can be written as

P (k, θ, ϕ) =
δ(k − k0)

4πk2
P̃ (θ, ϕ), (4)

where δ(k − k0)/4π k
2 is the spherical Dirac delta function for spherically symmetric curved spaces and P̃ (θ, ϕ)

is the two-dimensional wavenumber spectrum. Substituting eq. (4) into eq. (3), and noting that δ(k − k0) = 1
only when k = k0, the sound pressure field can be written as

p(rm) =
1

4π

2π∫
0

π∫
0

P̃ (θ, ϕ)e−j k0 r (sin(γ) sin(θ) cos(ϕ−ξ)+cos(θ) cos(γ)) sin(θ) dθ dϕ. (5)

Given the considerations of pure-tone excitation, eq. (5) proposes a bi-dimensional wavenumber spectrum,
which can be interpreted as a linear combination of plane waves travelling in the direction (θ, ϕ) with wavenumber
k related to the excitation frequency. In practical terms, Nolan [1] implements a discrete approximation of eq. (5)

p(rm) =

L∑
l=1

P̃ (kl)e−j⟨kl,rm⟩, (6)
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where the variables have the same meaning as in eq.(1), with the addition of the index l = 1, ..., L, which
leads to the wavenumber vectors {k1, ..., kl, ..., kL}, distributed uniformly over the k-space. In the same sense,
m = 1, ..., M leads to a discrete quantity of points in the physical space of the room {r1, ..., rm, ..., rM}. It is
worth remarking that eq. (6) is valid for the sound pressure in a certain receiver in a position. Denoting, as Nolan
[1] does, ψl(rm) = e−j⟨kl,rm⟩, and P̃ (kl) = xl, the sampling of the sound field in many positions can be written
as a matrix equation

p = H x, (7)

where p ∈ CM is a vector with the sound pressure sampled in the positions {r1, ..., rm, ..., rM}, x ∈ CL is
a vector containing the bi-dimensional wavenumber spectrum related to the directions {k1, ..., kl, ..., kL}. The
matrix H ∈ CM ×L is usually called sensing matrix and has elements ψm,l(rm,kl) = e−j⟨kl,rm⟩. The sensing
matrix is usually rectangular, which leads to an ill-posed problem. Thus, to find x from a set of measurements p,
regularization techniques are needed.

To reconstruct the sound pressures at a different set of positions knowing the wavenumber spectrum x, it
is enough to solve the problem described by eq. (7) using an appropriate sensing matrix H i.e. its components
ψm,l(rm,kl) should be calculating for the reconstruction positions.

2.2 Tikhonov regularization

To compute the wavenumber spectrum by means of eq. (7), the first instinct is to find the inverse matrix of
H . However, as stated in Remark 3, H is usually rectangular and thus H−1 does not exist. This means usually that
there will be infinite possible solutions x for eq. (7) with a given p. Then, the first alternative is to solve a least
squares problem with formulation

x̂ = min
x

∥H x− p∥22, (8)

where ∥ · ∥22 denotes the square of the Euclidean norm. However, given the physical interpretation attached to the
solution x, the solution to the problem in eq. (8) might not be the most appropriate for the phenomena that are
being analysed. On that account, finding a more correct solution requires the employment of a regularization to the
least squares problem, which essentially means specifying a restriction that the solution should be fit to. The choice
of regularization technique depends on the type of environment being analysed. Nolan [1] relates a couple of cases
to certain types of regularization. The most common and most versatile technique is the Tikhonov regularization,
which Nolan [1] cites as being very much appropriate to reverberant or fairly reverberant rooms. It also has been
deemed appropriate for in situ sound field evaluations such as in the experiments conducted by Nolan [1] and for
in situ absorption evaluation by Nolan [5] and Carvalho [6].

The Tikhonov regularization is defined by Hansen [2] as

x̂ = min
x

∥H x− p∥22 + λ2 ∥x∥22 = min
x

⟨H x− p, H x− p⟩+ λ2 ⟨x, x⟩, (9)

in which λ is called regularization parameter and it is what ponders between the norm of the residual ∥H x− p∥2
(how well the solution fits the problem) and the norm of the solution ∥x∥2. Excessively large values of λ will
produce small norm solutions that don’t fit the problem very well, and, conversely, excessively small values of λ
will produce less regular solutions.

Knowing that the point of minimum x̂ happens when the derivative of the expression equals 0 leads to an
equation where x̂ an be isolated, leading to

x̂ = (H∗H + λ2 I)−1H∗ p. (10)

Equation (10) can be further simplified by taking the singular value decomposition (SVD) of H . Knowingly,
the SVD of a matrix can be written as H = U ΣV ∗, where U and V are orthogonal (i.e. U−1 = UT ) and Σ is a
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diagonal matrix containing the singular values {σ1, ..., σM} of H in its principal diagonal. Thus the substitution
of the SVD of H into eq. (10), and writing I = V V ∗ leads to

x̂ = V (Σ∗ Σ+ λ2 I)−1 Σ∗ U∗ p. (11)

Equation (11) is still not the simplest form of solving the Tikhonov regularization, as matrix inversion is a
rather cumbersome process in the computational sense. Having in mind the nature of U , V , and Σ, eq. (11) can be
written as a summation of vectors

x̂ =

n∑
i=1

σ∗
i

|σi|2 + λ2
u∗
i pvi =

n∑
i=1

|σi|2

|σi|2 + λ2
u∗
i p

σi
vi =

n∑
i=1

Φ
[λ]
i

u∗
i p

σi
vi, (12)

where Φ
[λ]
i is called filter factor by Hansen [2], and it behaves such that for comparatively small values of λ with

relation to the singular values σi, Φ
[λ]
i = 1 and for much larger values of λ, Φ[λ]

i = σ2
i /λ

2. This “filtering” is
interesting because it reduces the influence of the errors caused by the smaller singular values, as when λ >> σi
the term σ2

i /λ
2 eventually forces errors in ui and vi to be smaller.

To use Tikhonov regularization, the parameter λ must be defined beforehand. This paper will explore two
different techniques: the “L-curve technique” and the “fixed point iterations technique”.

2.3 The L-curve technique

The L-curve method for determining the regularization parameter consists of pondering between the norm of
the solution ∥x̂∥2 and the norm of the residue ∥H x̂− p∥2. Their squares after substituting the SVD matrices are

∥x̂∥22 =

n∑
i=1

(
Φ

[λ]
i

u∗
ip

σi

)2

, (13)

and

∥H x̂− p∥22 =

n∑
i=1

(
(Φ

[λ]
i − 1)u∗

ip
)2

+ ε2. (14)

By analysing the derivatives of eq. (13) and eq. (14) in λ, Hansen [2] shows that both norms are monotone
with relation to λ. Moreover, Hansen [2] goes further and shows that ∥x̂∥22 is a monotonically decreasing function
of ∥H x̂− p∥22. Hansen also derives the curvature of the function in λ that relates ∥x̂∥2 and ∥H x̂− p∥2.

The idea behind the L-curve method is to find the parameter λ that produces the maximum curvature on the
relation between ∥x̂∥2 and ∥H x̂ − p∥2. The curve is called L-curve because when plotted in logarithmic scales
it has a shape similar to the letter “L”. The maximum curvature spot is what determines a change in behaviour
following increase in λ, as in the “vertical part” there’s larger values of ∥x̂∥2 and smaller values of ∥H x̂−p∥2, and
vice-versa for the “horizontal part”. Furthermore, the magnitude of λ is also related to the effect of perturbations in
the solution. A small λ has a smaller residue, but its associated solution has more influence of noise. Conversely,
larger values of λ display larger residues (so it has larger numerical error), but the solution is “smoother” and the
influence of noise is mitigated. The point of maximum curvature is deemed to contain a value of λ that is a good
ponderation between both cases.

2.4 The fixed point iteration technique

The fixed-point iterations technique was first proposed by Fermı́n [3], based on early work developed by
Regińska [4]. It essentially consists of finding a local minimum of an auxiliary function, which relates to the point
of maximum curvature in the L-curve.

Calling a certain Tikhonov solution for a generic parameter λ as xλ, x(λ) = ∥xλ∥2 and y(λ) = ∥H xλ−p∥2,
the auxiliary function Ψµ(λ) is defined
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Ψµ(λ) = x(λ) y(λ)µ, (15)

where µ > 0.
Regińska’s [4] article presents proof that if λ∗ maximizes the curvature of the L-curve, and if the tangent of

the L-curve at the point (log(x(λ∗)), log(y(λ∗))) has inclination −1/µ, then λ∗ minimizes Ψµ.
Fermı́n [3] proposes the minimization of Ψµ by means of eq. (16) (the derivative of Ψµ with relation to λ)

Ψ′
µ(λ) = y(λ)µ y′(λ)

(
x′(λ)

y′(λ)
+ µ

x(λ)

y(λ)

)
, (16)

and the knowledge that y(λ)µ y′(λ) ̸= 0 and x′(λ)/y′(λ) = −λ2. When these facts are combined, the condition
for Ψ′

µ(λ) = 0 is that

(λ∗)2 = µ
x(λ∗)

y(λ∗)
∴ λ∗ =

√
µ

√
x(λ∗)√
y(λ∗)

. (17)

To transform eq. (17) into a fixed-point problem i.e. a problem where φ(λ∗) = λ∗, it is enough to call

φ(λ) =
√
µ

√
x(λ)√
y(λ)

. (18)

Fermı́n [3] attests that the criterion to find λ using the fixed-point problem is that the λ∗ that minimizes Ψµ

is near the corner of the L-curve in log-log scale. Moreover, the process does not depend on the µ value, so by
process of iteration, if no minimum of Ψµ is found for a certain µ, its value can be changed, and the search for the
minimum happens in a different function Ψµ.

3 Experiments and Simulations - Reconstruction of the Sound Field on an Impedance
Tube

Impedance tubes are devices used to measure the normal incidence acoustic absorption. On this type of
device, a speaker placed on one side of the tube creates an acoustic field in its interior. The other extremity of the
tube is closed with a sample of the material to be characterised. Because of the dimensions of the tube, the sound
field can be considered as composed by two plane-waves, one emitted by the speaker and the reflection off the
absorbing sample for a range of frequency [7].

The transfer function in the impedance tube between the pressure in a point a certain length z from the sample
at the termination and the sound source, according to Jacobsen and Juhl [8], is given by

F (z) =
p(z)

ps(zs)
=

(e−jkz −R ejkz)

(e−jkzs −R ejkzs)
. (19)

where p is the sound pressure in a distance z from the source, ps is the sound pressure at the source, k is the
wavenumber of the oscillation k = (2πf)/c, and R is the reflection coefficient of the sample surface. The term
ejωt, which represents the time dependence, can be omitted.

The impedance tube used for these experiments was designed by Busulo [9]. It has three slots for the trans-
ducer, which will form the sequential measurement array. The impedance tube has a frequency range between
200 Hz and 2700 Hz The measurements and simulations were done as part of the work produced by Garron [10].

The simulated transfer function for a tube with a R = 0.85 (green dotted line) and the reconstructions for the
position 3 using the L-curve (blue dashed line) and the fixed point (maroon dashed line) algorithms are displayed
in Fig. 1a. The measured transfer function for Busulo’s tube [9] (green dotted line) and the reconstructions for the
position 3 using the L-curve (blue dashed line) and the fixed point (maroon dashed line) algorithms are displayed
in Fig. 1b.
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(a) Simulated transfer function. (b) Measured transfer function.

Figure 1. Simulated (a) and measured (b) transfer functions and reconstructions for position 3 of the impedance
tube.

In Fig. 1 it can be seen that the reconstruction using the fixed point regularization parameter produces a recon-
struction more coherent than the reconstruction using the L-curve algorithm, for either the simulated or measured
transfer functions. The average relative percentage errors for each third-of-octave bands for the simulation (Fig.
2a) and for the measurement (Fig. 2b) are displayed in Fig. 2. The calculation of the relative error follows the
metric proposed by de Carvalho et al. [6]. The blue asterisks are the L-curve errors and the maroon asterisks are
the fixed point errors, with the dashed lines added to avoid parallax. The error was averaged in the three transducer
positions.

(a) Simulation. (b) Measurement.

Figure 2. Simulated (a) and measured (b) third-of-octave average reconstruction error for position 3 of the
impedance tube.

Figure 2 makes it evident that the fixed point regularization parameter causes reconstruction errors of smaller
significance than the ones on the L-curve case. This happens most likely for a few reasons. For starters, the
wavenumber spectrum for the impedance tube does not have the same requirement for smoothness (or regularity) as
the one for strongly reverberant [1] or common rooms [6]. As such, the choice of smaller regularization parameters
is sufficient to provide a reliable reconstruction of the sound field.

Another factor that may influence the quality of the regularized solution is the condition number of the
sensing matrix. For larger sensing matrices i.e. for more sampling positions or for a more refined decomposition,
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the condition number tends to increase. The increase in the sensing matrices’ condition numbers can, in turn,
increase numerical errors in the regularization.

Another observation that can be made about 2 is the existence of discontinuities on the transfer function
reconstructed using L-curve on the simulated scenario. This may be related to the L-curve not being able to find a
regularized solution that fits the simulation without noise which can be interpreted as a stricter constraint than the
measured case. Again, this is not a problem for the fixed-point algorithm. Furthermore, for the L-curve errors, a
behaviour similar to the one found in the regularization problem for the transfer function reconstruction in a room
[6], in which there’s a rise on the reconstruction errors for the higher frequencies and the lower frequencies, with
a middle band in which the error is lower.

4 Conclusions

The wavenumber spectrum was calculated from three samples of the sound field for a simulation and for a
real measurement in an impedance tube. The transfer functions for each of the measurement points were recon-
structed. The average relative errors between reconstructions and measurements were computed and averaged in
the positions and then in third-of-octave bands. The regularization using the fixed point parameter achieved smaller
errors than the L-curve parameter. The behaviour of the errors for the L-curve follows the expected for the method.
Ideas for future works include the assessment of the condition number for the sensing matrices and their relation to
the reconstruction error, the inclusion of noise in the simulation, and exploring the potential of calculating normal
incidence absorption using the wavenumber approach.
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sonoro. Diploma thesis, Federal University of Technology of Paraná, 2022.
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