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Abstract. The most used method in Bayesian inference is the Markov Chain Monte Carlo (MCMC). But they
are expensive, not only because they require a lot of simulations of the model to explore the posterior distribution
but also because there are no clear criteria to determine if the method has converged to ensure the quality of the
obtained parameters and error estimates. This work objective is to explore a set of convergence diagnostics or
MCMC methods and their strategies for a convection-diffusion model and an epidemiological model, a SIR-type
model.
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1 Introduction

The Bayesian inference is a very powerful tool to calibrate, fit or identify a model to a data set. The most
used method is the Markov Chain Monte Carlo (MCMC), which uses a proposal distribution to draw samples from
a posterior distribution. Even with the increase in computing power, MCMC methods are expensive, not only
because they require a lot of simulations of the model to explore the posterior distribution but also because there
are no clear criteria to determine if the method has converged to ensure the quality of the obtained parameters and
error estimates which forces the modeler to overestimate the number of iterations.

There are several diagnostics in the literature as presented by Brooks and Roberts [1], Roy [2], Gilks et al.
[3]. In this work, we explore a set of convergence diagnostics or MCMC methods. We will present in section 2
the Geweke, Gelman, and Boone methods and their strategies, in section 3 we preset two mathematical models
utilized, the first is a convection-diffusion model in which for some scenarios are not identifiable. The second one
is an epidemiological model, a compartmental model with loss of immunity, that is a helpful tool in predicting
many contagious illnesses.

2 MCMC Convergence Diagnostics

Markov Chain Monte Carlo Method (MCMC) and its variations Andrieu and Thoms [4] prove to be a good
tool for Bayesian calibration. However, due to its stochastic nature, there is no well-established convergence
diagnostic. Frequently, the objective in MCMC simulations is the moments of the marginal distributions of the
parameters, so a traditional way to check the convergence is to use the visual examination of the expectations
estimate for each parameter based on the samples obtained as mentioned by Roy [2]. However, this procedure is
far from an accurate method for evaluating convergence.

The methods used in this work are created based on the fact that the Markov Chain that is generated has
achieved a steady-state or very close to a stationary distribution, Brooks and Roberts [1]. These are sometimes
called burn-in methods due to the fact that they can be used to determine the length of the chain that can be
discarded to get an unbiased expectations estimate.

2.1 Geweke

The Geweke diagnostic is originally developed for a single long chain in Geweke et al. [5], and the idea is to
compare if an initial portion of the chain is similar to a later portion of the chain. It is constructed by dividing the
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long chain of the parameter θi, into two subchains, of sizes nA and nB . The location parameter of the distribution
of θi is evaluated for the two subchains and if they are similar this indicates that the two subchains are drawing
samples from the same stationary distribution which indicates that the MCMC converges.

The Geweke diagnostic uses the Two-sample T test of the location parameters with different variances as:

T =
θ̄B − θ̄A√

n−1
A s2A + n−1

B s2B

(1)

where θ̄ are defined as:

θ̄A = n−1
A

nA∑
j=1

θj θ̄B = n−1
B

nB∑
j=n∗

θj (2)

The sample variances,s2A and s2B need to be adjusted because the samples are not independent, so Geweke
utilizes a spectral density at frequency zero Ŝ(0) as a estimate of s2, which implies in:

T =
θ̄B − θ̄A√

n−1
A ŜA(0) + n−1

B ŜB(0)
(3)

If the ratio nA/n and nB/n are constant and with

nA + nB

n
< 1 (4)

we have that T → N (0, 1) if n → ∞, making possible to use a hypothesis test to check if the chain has converged.
There not a optimal choice for nA/n and nB/n as mention in Brooks and Roberts [1], the only restriction is Eq.4.
In this work we follow the Geweke et al. [5] suggestion, that is nA = 0.1n and nB = 0.5n.

2.2 Gelman

The Gelman method presented in Gilks et al. [3], Boone et al. [6], Gelman and Rubin [7] is created to analyze
the convergence based on the use of multiple chains. This diagnostic is based on the Analysis of the variance
among the chains and in each chain. It is based on the fact that if all chains that was initiated from a different start
point, and at the convergence, they are close to each other and the variation inside the chain is small this means
that the MCMC achieved a steady state or converged.

θ̄.. =
1

m

m∑
j=1

θ̄.j (5)

s2j =
1

(n− 1)

n∑
j=1

(θij − θ̄.j)
2 θ̄.j =

1

n

n∑
j=1

θij (6)

B =
n

n−m

m∑
j=1

(θ̄.j − θ̄..)
2 W =

1

m

m∑
j=1

s2j (7)

R̂ =

√
ˆvar+(Θ|D) (8)

with
ˆvar+(Θ|D) =

n− 1

n
W +

1

n
B (9)

R̂ close to 1

2.3 Hellinger Distance

Both diagnostics present in previous sections and others in the literature as in Brooks and Roberts [1] are
based only on the moments and other summary statistics of the posterior, as noted in Boone et al. [6], even if these
diagnostics detect a convergence, the posterior can be different in shape. To overcome this limitation Boone et al.
[6], present a diagnostic that uses the Hellinger distance.

The Hellinger distance between two distributions f and g is defined as:
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H(f, g) =

√
1

2

∫ (√
f(x)−

√
g(x)

)2

dx (10)

Many distances can be used, but they choose this because it is bounded, so 0 < H(f, g) < 1, meaning H(f, g) = 0
there are no divergence between then and with H(f, g) = 1 the distributions do not share a common support as
stated by Boone et al. [6]. There are also other distances and methods to compare distributions, but they are not
bounded and in the same cases, they are sensitive to the presence of tiles.

Since we have only n samples of f and g, to estimate H(f, g) the distributions are approximate by a kernel
density. In this work we use the traditional Gaussian kernel with the bandwidth of the kernel given by Silverman’s
Rule of Thumb so we have:

f̂ =
1

nh
√
2π

n∑
i=1

exp

(
− (x− xi)

2

2h2

)
(11)

with the bandwidth defined as

h =
0.9min (ŝ, IQR)

1.34
n1/5 (12)

where ŝ is the sample standard deviation and IQR is the interquartile range.
This diagnostic is used by dividing the chain for θi into two parts (nA = 0.5n and nB = 0.5n) and evaluating

the Hellinger distance. For a stop criterium we utilize Ĥ(f̂ , ĝ) < C where C is a constant and will choose in
function of the accuracy and computational cost in this work we uses the recomendation in Boone et al. [6], where
can C can take any of this values C = {0.05, 0.075, 0.1}.

2.4 Strategies

In standard MCMC implementation, the number of iterations is fixed and given as a parameter. Which makes
the user overestimate it. Using a convergence diagnostic, it is possible to make the number of iterations vary by
controlling the size of an increment of the chains, reducing the computational cost and controlling the convergence.

In this work, we utilize the Hellinger diagnostic to implement a simple strategy to verify its potential for use
in more complex problems. We assume that the initial number of iterations is lower than usual and utilize the
following strategy. {

IF Ĥ ≥ 0.07 THEN increment = 2.0× size;

IF Ĥ < 0.07 THEN increment = 0.02× size∗ − 0.01× size
(13)

where, size∗ is the last chains’s size before the Ĥ value be less than 0.07. To guarantee that the increment always
takes positive values, the size∗ will be updated as follows:

IF size > 2× size∗ THEN size∗ = 1.5× size∗ (14)

furthermore, If increment = 0 then the chain’s size will be increased by 10.

3 Results

We use the standard MCMC method with Metropolis-Hastings sampler as suggested in Gilks et al. [3]. Where
each sample of the proposal is a random perturbation of the current position, and it is drawn from a Gaussian distri-
bution where the variance matrix is obtained as indicated by Smith [8]. We apply the diagnostics to two problems:
the first is the convection-diffusion problem and the second is an epidemiological problem for an infectious disease
where the immunity lasts for a limited period before decay making the individuals once again susceptible to the
disease.

The tolerance used in Eq.13 has to be satisfied for all variables. All runs have the same initial point and
the same seed for the random number generator. In the Geweke diagnostic, we utilize the same chain partition
suggested in Geweke et al. [5]. In Gelman and Hellinger we divide the chain in half to evaluate the diagnostics.

3.1 Convection-Diffusion Problem

The one dimensional transport of a scalar-value passive species concentration φ(x) by the velocity field u in
a region is modeled in Brooks and Hughes [9] as:
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−K
d2φ

dx2
+ u

dφ

dx
= 0 (15)

with the following boundary conditions as φ(0) = 0 and φ(1) = 1, K is the diffusion coefficient.
We utilize this problem because it has an analytical solution and when we calibrate the two parameters, k

and u, with uniform distributions as priors, this model is non-identifiable. A synthetic data set with eleven points
equally spaced, is generated in the domain [0; 1] by running the model, eq. (15), with k = 0.5 m2/s and u = 3.0
m/s and adding an Gaussian error given by N (0, 0.12).

The priors used are u ∼ U(0.01, 5) and k ∼ U(0.01, 2). Table 1 shows that the MAPs are very close. The
Geweke and Gelman take fewer iterations, but the Hellinger diagnostic is comparable with the other in terms of
accuracy. One point that is important to note here is that the model has identifiability problems. (Table 1).

Figure 1, Fig. 2 shows the chains for u and k using the Geweke, Gelman , and Helling diagnostics. All the
chains are well mixed and the Hellinger generated a longer chain than the other two diagnostics. This is expected
since this diagnostic compares the distribution evolution in the chain and the others compare only averages.

Figure 3 shows that the variable k takes more time to converge. All diagnostics behave well even if the model
is non-identifiable.

Figure 3 shows the convergence for each of the variables u and k for the Hellinger diagnostic. We notice that
the u converges very fast concerning k. We also notice that in the beginning exists a period with strong oscillations
in the convergence curves. After this period, Ĥ begins to converge. These strong oscillations mark the size of
the chain that can be discarded. Which is called the burn-in. Table 1 shows the maximum a posteriori probability
(MAP) estimate of the parameters and the number of iterations necessary to converge for each diagnostic.

Table 1. Calibrated parameters (MAP) for each diagnostics

u k Iterations

Geweke 3.39767791 0.70648397 5

Gelman 3.39767791 0.70648397 5

Hellinger 2.43581482 0.50641629 43
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Figure 1. Chains for the convection problem using Geweke and Gelman diagnostic.
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Figure 2. Chains for the convection problem using Hellinger diagnostic.
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Figure 3. Hellinger diagnostic convergence for the convection problem.

3.2 Epidemiological Problem

Keeling and Rohani [10], presented an epidemiological model for diseases that do not activate a long time
immunity in an organism. The model is defined as a function of the Susceptible (S), infectious (I), and recovered
(R) populations by the system of equations:

dS

dt
= −βSI + wR

dI

dt
= βSI − γI (16)

dR

dt
= γI − wR

where β is the contact rate, 1/γ is the infectious period and 1/w is the average protected period. The total
population is normalized and set to one and the initial condition for the infectious population is I(0) = 5.0E − 05
and for the recovery recovered population is R(0) = 0. In this example, we also utilize a synthetic data set
generated with following parameters β = 0.675, γ = 1/3, w = 1/30 and adding a Gaussian erro generated by
N (0, 0.0152).

In Table 2 we present the parameters evaluated for all diagnostics and in this model, and all are very close. We
utilize in all diagnostics a chain with 10000 samples in the initial step, which is enough for Geweke and Gelman
to converge in one iteration. For the Hellinger diagnostic, we show two strategies, one that keeps the size constant
and the other presented in Eq. 13 named as Adaptive in Tab.2. Notice that there is a gain in using the adaptive
strategy.

Figure 4 presents the data used and the solution for the infectious population using the maximum a posteriori
probability estimate of the parameters. The results are in agreement with the data. Figure 5 shows all curves
obtained for both strategies and they are equal making the Adaptive strategy save some solutions of the model
without affecting the quality of the solution.
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Table 2. Calibrated parameters (MAP) for each diagnostics

β γ w Iterations size

Geweke 0.66123972 0.31487478 0.03771673 1 10000

Gelman 0.66123972 0.31487478 0.03771673 1 10000

Hellinger

Constant 0.66078769 0.31512646 0.03771443 10 60000

Adaptive 0.66078769 0.31512646 0.03771443 16 44899
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Figure 4. Data and solution obtained with the adaptive strategy for the infectious population
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Figure 5. Solution obtained with both strategies for the SIR model
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Figure 6. Convergence for both strategies for thr SIR model

4 Conclusions

In this work, we utilize the Hellinger diagnostics presented by Boone et al. [6], which does not use summary
statistics like averages and the variance of the MCMC chains but considers the full distribution, analyzing the
Hellinger distance along the chain. It presents good behavior for the two problems we present. Even when one
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of the problems is a model with an identifiability problem. Because the diagnostic is dealing with a complete
distribution it takes more time to converge. We developed a simple strategy to change the number of samples as a
function of the Ĥ to reduce this difficulty. Of course, a more elaborated strategy can be built but it is the focus of
future work. The diagnostic also gives an estimative of the burn-in.
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