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Abstract. A cohesive dual boundary element formulation is presented for crack propagation analysis and a path-

following method is proposed to solve the nonlinear system of equations by the direct control of one of the known 

degrees of freedom. The simple linear cohesive model is introduced into the algebraic boundary element equations 

by local stiffness matrices. According to the cohesive law, the stiffness coefficients decays as crack displacement 

discontinuities increases. The acting loads are divided into two groups: one in which the load is perfectly known 

and another in which only the direction is known. The magnitude (or load factor) of the latter is determined with 

respect to the equilibrium of the boundary fields (indirectly controlled) and an additional path-following constraint 

equation. The resulting non-linear system is solved using an incremental iterative scheme. For each iteration, the 

corrections to the boundary fields are obtained in a partitioned manner, in which the load factor is calculated 

independently using the direct control of the degree of freedom as the path-equation. The results show that the 

proposed approach can efficiently capture the equilibrium curves. 
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1  Introduction 

 

Fractures have been a major engineering problem since the beginning of human development. It is of vital 

importance to know how the failure of materials occurs and thus work towards safety, saving materials and 

correctly designing each type of structure for its intended purpose. There are manly two ways to account for the 

influence of cracks within a structure: discrete cracks or continuous approaches. The continuous approaches, 

namely, continuum damage mechanics [1] and phase-field methods [2], results naturally in nonlinear problems. 

Within the discrete crack approaches, the physical non-linearities can appear both in the bulk material, as in the 

case of elastoplastic fracture mechanics [3], as well as in the crack surfaces itself, which is a common feature of 

cohesive models [4]. Cohesive models replace the fracture processes zone near the crack tip (zone where energy 

dissipation occurs due to physical nonlinearities) by a fictitious crack which its surfaces are subjected to cohesive 

stresses, written as a function displacement discontinuity. Thus, it is imposed to the model that the dissipated 

energy in the fictitious crack must be equal to the dissipated fracture energy in the process zone. The first cohesive 

model was proposed by [5] for the analysis of crack propagation in ductile materials. [6] extended the cohesive 

models for quasi brittle materials, in which the dissipated energy in the fracture process zone is meanly due to 

micro-cracking. Now a days, several physical consistent cohesive models, including potential and damage-based 

ones, can be found in the literature [4, 7].  

The boundary element method is a numerical method that can solve solid mechanics boundary value 

problems with a smaller order of spatial discretization than other domain methods, namely, the finite element 

method. When applied to model a discrete crack, the overlapping crack surfaces will generate linear dependent 

equations into the algebraic system of equations, making its solution impossible. In this sense, the dual boundary 

element formulation [8-10] came to circumvent these limitations. The dual boundary element method is a 

collocation weighted residual method, in which for collocation points at one face of the crack imposes the 
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displacement integral equation and for the symmetric collocation point on the other crack face imposes the traction 

integral equation. Since these dual integral equations are linear independent, it is possible to solve the problem 

requiring the spatial discretization only at the boundary and crack surfaces. Other approaches to model discrete 

cracks using boundary element formulations include the displacement discontinuity method [11, 12], the sub-

region technique [13, 14], the use of specialized fundamental solutions of solids containing cracks [15], the dipole 

formulation [16, 17] and Galerkin formulations [18]. 

Since both boundary displacements and tractions are field variables in boundary element method, cohesive 

modes can be introduced in the formulation in a more direct way. Aliabadi [19] presented for the first time a 

cohesive dual boundary formulation to address crack growth in concrete. It is worth mentioning that the 

introduction of the cohesive model into the boundary element formulation results in a nonlinear system of 

equations, which requires special techniques for its numerical resolution. Leonel and Venturini [20] presented a 

purely Newton-Raphson procedure, i.e., the tangent operator, to solve the nonlinear system of equations during 

the cohesive propagation analysis in quasi brittle materials. It was show that such an operator resulted in a small 

number of iterations for the convergence of the nonlinear analysis compared to previous approaches. Cordeiro and 

Leonel [21] applied the cohesive dual boundary formulation and the tangent operator technique for quasi brittle 

crack propagation analysis in anisotropic materials. Even though the tangent operator converges faster to the 

solution of the nonlinear equations, it presents some drawbacks in the presence of instabilities. Besides, in both 

works by Leonel and Venturini [20] and Cordeiro and Leonel [21], the sub-matrices involved in the calculation of 

the residue vector changes dimensions during the crack propagation, introducing difficulties in the implementation 

of more sophisticated cohesive models.  

It is well-known in the literature that purely Newton-based approaches, such as the tangent operator, fails in 

obtaining the equilibrium trajectories in the face of instabilities such as the snapping effects [22]. Riks [23] 

proposed that snapping phenomena could be adequately addressed by complementing the equilibrium equations 

(residue equal to zero) with an auxiliary equation, namely, the path-equation. In that case, the path-equation 

represented a restriction on the path size to be followed along the equilibrium curve for a given loading step. This 

way of predicting the equilibrium curve in known as path-following (among the engineers) or continuation 

methods (among the mathematicians). The direct consequence of adding one more equation in the non-linear 

system is that existing solvers need to be adapted, which can be inconvenient in numerous situations. Later, 

Crisfield [24,25] showed that it would be possible to use existing solvers without any modification, provided that 

the corrections were obtained from two parts. A first part comes from the unbalance residue and a second results 

from applying a unit load standard in the same direction of the indirectly controlled load. These studies allowed 

essential advances for the Non-Linear Structural Analysis field, using the Finite Element Method in particular [26-

28]. Over the last few years, only a few works studied the association of BEM with path-following techniques. 

Most path-following boundary element-based studies found in the literature, i.e., [29-32] for geometrically 

nonlinear bending problems and [33-37] for physically nonlinear problems induced by cracks, adopted Riks-like 

formulation combined with the so-called arc-length method. Although usual, this is not the only possible choice 

[22]. A unique path-equation that works well for all snapping cases is not known and it is up to the analyst to 

choose the most appropriated one for the case under study. There are basically two groups of path-following 

boundary element-based studies: (i) those that incorporate the path-equation into the equilibrium equation before 

proceeding the linearisation and (ii) those that use the path-following equations separately to calculate the load 

factor corrections, without including it in the equilibrium linearization. The last alternative is named partitioned 

approach. 

Following the ideas presented by Oliveira et al [22] for a sub-region cohesive boundary element formulation, 

the present work proposes an alternative approach to introduce the cohesive models into the dual BEM formulation 

based on local cohesive stiffness matrices, which results in a residue that is written in terms of matrices that do not 

change dimension during the propagation process. Besides, a partitioned path-following technique with the direct 

control of one of the unknown degrees of freedom as the path-following equation is deduced to solve the resulting 

nonlinear problem. A simple numerical example is presented to validate the proposed approach. 
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2  Dual boundary element method 

The dual boundary element method (dual BEM) is a widely used method for solving linear elastostatic 

problems containing crack. The method is based on the use of the dual Boundary Integral Equations (BIE´s) of 

linear elasticity [38]. In the following, the numerical solution of the dual BIE by a weighted residue collocation 

dual BEM is presented. 

2.1 Boundary integral equations of linear elasticity 

Consider an elastic cracked solid with domain 𝛀, external boundary 𝚪b, internal crack boundary 𝚪c=𝚪c
+ ∪ 𝚪c

−. 

The mechanical response of the solid can be represented in terms of the BIE’s. The displacement (singular) BIE, 

assuming the body and inertia forces as nil, is written for a boundary source point 𝐲 as follows 

𝑐𝑖𝑗(𝐲)𝑢𝑗(𝐲) = ∫ U𝑖𝑗(𝐲, 𝐱)𝑡𝑗(𝐱)
𝚪

d𝚪 − 𝒞∫ T𝑖𝑗(𝐲, 𝐱)𝑢𝑗(𝐱)
𝚪

d𝚪                                                                                                             (1) 

where 𝐲 and 𝐱 indicates the source and field points, respectively. 𝑢𝑗(𝐲) is the displacement at 𝐲. 𝑢𝑗(𝐱) and 𝑡𝑗(𝐱) 

are boundary displacements and tractions fields and, U𝑖𝑗(𝐲, 𝐱), T𝑖𝑗(𝐲, 𝐱) are, respectively, the Kelvin fundamental 

solutions for displacements and tractions, which are functions of the distance 𝑟 = ‖𝐫‖ = ‖𝐱 − 𝐲‖ [39 = Aliabadi, 

2002]. 𝒞 ∫  indicates that the integral is evaluated in the Cauchy Principal Value sense and 𝑐𝑖𝑗(𝐲)𝑢𝑗(𝐲) is the free 

term arising from the singular integral. For a source point 𝐲+ at the crack face 𝚪c
+, the displacement BIE reads 

      𝑐𝑖𝑗(𝐲
+)𝑢𝑗(𝐲

+) + 𝑐𝑖𝑗(𝐲
−)𝑢𝑗(𝐲

−) = ∫ U𝑖𝑗(𝐲
+, 𝐱)𝑡𝑗(𝐱)

𝚪

d𝚪 − 𝒞∫ T𝑖𝑗(𝐲
+, 𝐱)𝑢𝑗(𝐱)

𝚪

d𝚪                                                           (2) 

in which the additional free term 𝑐ij(𝐲
−)uj(𝐲

−) appears due to the fact that 𝐲− also lies on 𝚪c
+. The traction (hyper-

singular) BIE is obtained by the differentiation of the displacement BIE (1) with respect to 𝐲, applying the 

constitutive relation (Hooke’s law) and further the Cauchy formula for surface balance. The traction BIE written 

for a crack source point 𝐲− at the crack face 𝚪c
− reads 

1

2
𝑡𝑖(𝐲

−) − 
1

2
𝑡𝑖(𝐲

+) = 
𝑗
(𝐲−)𝒞 ∫ D𝑘𝑖𝑗(𝐲

−, 𝐱)𝑡𝑘(𝐱)
𝚪

d𝚪 − 
𝑗
(𝐲−)ℋ∫ S𝑘𝑖𝑗(𝐲

−, 𝐱)𝑢𝑘(𝐱)
𝚪

d𝚪                                                  (3) 

where: 

      S𝑘𝑖𝑗(𝐲
−, 𝐱) =  ℂ𝑘𝑖𝑗𝑙

𝜕T𝑙𝑚(𝐲
−, 𝐱)

𝜕𝑦𝑚
−           D𝑘𝑖𝑗(𝐲

−, 𝐱) =  ℂ𝑘𝑖𝑗𝑙
𝜕U𝑙𝑚(𝐲

−, 𝐱)

𝜕𝑦𝑚
−                                                                                     (4) 

ℂ𝑘𝑖𝑗𝑙  standing for the constitutive elastic components and ℋ∫  denotes a Hadamard Finite Part integral, which 

can only be defined for source points 𝐲− lying on smooth boundaries. Thus, 𝑐𝑖𝑗(𝐲
+) = 𝛿𝑖𝑗 2⁄  was considering in 

the deduction of (3).  

2.2 Boundary approximations 

Approximations are required for obtaining numerical solutions of the previous presented BIE´s by classical 

weighted residue collocation method. Thus, the boundaries 𝚪b, 𝚪c
+ and 𝚪c

− must be discretized into boundary 

elements, over which displacements, tractions, and the boundary geometry are approximated. Thus, Eq.´s (2-4) 

results 

      𝑐𝑖𝑗(𝐲)𝑢𝑗(𝐲) +∑∫ T𝑖𝑗(𝐲, 𝐱(𝜉))𝑁
𝛼(𝜉)𝐽(𝜉)𝑑𝜉𝑢𝑗

𝛼

𝚪e

 

NE

e=1

=∑∫ U𝑖𝑗(𝐲, 𝐱(𝜉))𝑁
α(𝜉)𝐽(𝜉)𝑑𝜉𝑡𝑗

𝛼

Γe

  

NE

e=1

                                                (5) 

      𝑐𝑖𝑗(𝐲
+)𝑢𝑗(𝐲

+) + 𝑐𝑖𝑗(𝐲
−)𝑢𝑗(𝐲

−) +∑∫ T𝑖𝑗(𝐲
+, 𝐱(𝜉))𝑁𝛼(𝜉)𝐽(𝜉)𝑑𝜉𝑢𝑗

𝛼

𝚪e

 

NE

e=1

=∑∫ U𝑖𝑗(𝐲
+, 𝐱(𝜉))𝑁α(𝜉)𝐽(𝜉)𝑑𝜉𝑡𝑗

𝛼

Γe

       

NE

e=1

(6) 
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1

2
𝑡𝑖(𝐲

−) −
1

2
𝑡𝑖(𝐲

+) + 
𝑗
(𝐲−)∑∫ S𝑘𝑖𝑗(𝐲

−, 𝐱(𝜉))𝑁𝛼(𝜉)𝐽(𝜉)𝑑𝜉𝑢𝑘
𝛼

𝚪e

 

NE

e=1

= 
𝑗
(𝐲−)∑∫ D𝑘𝑖𝑗(𝐲

−, 𝐱(𝜉))𝑁α(𝜉)𝐽(𝜉)𝑑𝜉𝑡𝑘
𝛼

Γe

  

NE

e=1

(7) 

where NE indicates the number of boundary elements utilized for discretizing the boundary 𝚪 = 𝚪𝑏 ∪ 𝚪c
+ ∪ 𝚪c

−, 𝚪e 

represents the parametric curve or surface of a given element 𝑒, 𝑁𝛼(𝜉) are basis functions (Lagrange polynomials 

are adopted in the present work), 𝐽(𝜉) is the Jacobian of the gaussian to physical space mapping and 𝑢𝑗
𝛼 and 𝑡𝑗

𝛼 are 

the displacements and tractions components at the collocation points (set equal to the source points), respectively. 

The singular and hypersingular integrals in (5), (6) and (7) are treated by the subtraction singularity technique [39] 

and the remaining regular integrals are performed with standard Gaussian quadrature. The BEM usual system of 

equations 𝐇𝐮 = 𝐆𝐭 is thus obtained from the collocation of (5) for collocation points 𝐲 lying on 𝚪𝑏, (6) for 

collocation points 𝐲+ lying on 𝚪c
+ and (7) for collocation points  𝐲− lying on 𝚪c

−. Discontinuous boundary elements, 

such as those presented in [39], are adopted in regions of geometric or traction discontinuities on and for the 

elements over the crack faces. 

3  Cohesive dual boundary element method 

A new dual boundary element formulation, capable of naturally introduce any desired cohesive behaviour 

for the tractions at the crack surfaces is presented. For illustration purposes, a very simple cohesive model is 

introduced into the dual BEM equations and the resulting nonlinear system is solved by a partitioned path following 

incremental-iterative approach, in which the magnitude (or load factor) of the acting forces is determined with 

respect to the equilibrium of the boundary fields (indirectly controlled) and an additional path-following constraint 

equation. Any unknown degree of freedom, i.e., boundary displacement and tractions, displacement of one face of 

the crack or the displacement discontinuities at the crack, can be chosen to be controlled.  

3.1 A simple cohesive zone model 

The normal and tangential cohesive tractions 𝑡𝑛 and 𝑡𝑡, can be generally related to the normal and tangential 

displacement discontinuities, ∆𝑢𝑛 and ∆𝑢𝑡, by cohesive stiffness 𝑘𝑛 and 𝑘𝑡 as follows: 

 {
𝑡𝑛
𝑡𝑡
} = [

𝑘𝑛(∆𝑢𝑛, ∆𝑢𝑡)

𝑘𝑡(∆𝑢𝑛, ∆𝑢𝑡)
] {
∆𝑢𝑛
∆𝑢𝑡

}                                                                                                                                      (8) 

which can be presented in matrix format as: 

 𝐭̅ =  𝐤̅(∆𝐮̅)∆𝐮̅                                                                                                                                                                                                 (9) 

In the present study, a simple cohesive model illustrated in Figure 2 is adopted.  

 

Figure 2. Cohesive zone model 
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The initial and critical normal displacement discontinuities are defined, respectively, as ∆𝑢0 = 𝑓𝑡 𝑘𝑛0⁄  and ∆𝑢𝑐𝑟 =

2𝐺𝑓 𝑓𝑡⁄ . Where 𝑓𝑡 is the material tensile strength, 𝐺𝑓 the fracture energy and 𝑘𝑛0, 𝑘𝑡0, the initial cohesive stiffness 

in both normal and tangential diredawctions. For this simple model, the normal and tangential cohesive stiffness 

are given by: 

 𝑘𝑛 =

{
 

 
𝑘𝑛0

𝑐(
∆𝑢𝑐𝑟
∆𝑢𝑛

− 1)

0

          
0 ≤ ∆𝑢𝑛 ≤ ∆𝑢0
∆𝑢0 ≤ ∆𝑢𝑛 ≤ ∆𝑢𝑐𝑟

∆𝑢𝑛 > ∆𝑢𝑐𝑟

                            𝑘𝑡 = {
𝑘𝑡0
0
          

0 ≤ ∆𝑢𝑛 ≤ ∆𝑢0
∆𝑢𝑛 > ∆𝑢0

                                   (10) 

where 𝑐 = 𝑓𝑡 (∆𝑢𝑐𝑟 − ∆𝑢0)⁄ . Notice that, in this model, both 𝑘𝑛 and 𝑘𝑡 are exclusive functions of ∆𝑢𝑛. Besides, 

the definition of 𝑘𝑡 in (10) implies a brittle shear behaviour to the model. 

It is interesting to rewrite (9) in the global coordinate system for which the linear elasticity boundary value problem 

is defined. Thus, one defines a coordinate transformation 𝐑 such that:  tn   tt 

𝐭̅ =  𝐤̅(∆𝐮̅)∆𝐮̅      ⇒      𝐑T𝐭 =  𝐤̅(∆𝐮̅)𝐑T∆𝐮     ⇒      𝐭 =  𝐑𝐤̅(∆𝐮̅)𝐑T∆𝐮                                                                                 (11) 

in which 

 𝐑 = [
𝑛1 𝑡𝟏
𝑛2 𝑡2

]          or         𝐑 = [
𝑛1 −𝑛2
𝑛2 𝑛1

]           with          𝐑𝐑T = 𝐈 = [
1 0
0 1

]                                                             (12) 

is the coordinate rotation transformation and 𝑛𝑖 = 𝒏. 𝒆𝑖, are the cosines between the crack normal direction 𝒏 and 

the basis vectors 𝒆𝑖. Thus, in the global coordinate system, the cohesive model can be expressed as: 

 𝐭 =  𝐤(∆𝐮̅)∆𝐮                                                                                                                                                                                               (13) 

where: 

 𝐤 = 𝐑𝐤̅𝐑𝑡 = [
𝑘11 𝑘12
𝑘21 𝑘22

] = [
𝑛1
2k𝑛 + 𝑛2

2k𝑡 𝑛1𝑛2k𝑛 − 𝑛1𝑛2k𝑡
𝑛1𝑛2k𝑛 − 𝑛1𝑛2k𝑡 𝑛2

2k𝑛 + 𝑛1
2k𝑡

]                                                                               (14) 

is the cohesive stiffnesses matrix, written for the global coordinate system. 

3.2 Nonlinear system of equations 

From Figure 1, it is possible to split the BEM linear system of equations governing regarding the classification 

of the collocation points belonging to the boundaries where displacement and tractions are prescribed and the 

positive and negative sides of the crack, where the cohesive model previously presented will be imposed. Thus: 

 λ𝐇u𝐮̅ + 𝐇t𝐮t + 𝐇c
+𝐮+ + 𝐇c

−𝐮− = 𝐆u𝐭u + λ𝐆t𝐭̅ + 𝐆c
+𝐭+ + 𝐆c

−𝐭−                                                                                       (15) 

from the prescribed boundary quantities 𝐮̅ and 𝐭,̅ one computes the vectors: 𝐅̅u = 𝐇𝑢𝐮̅ and 𝐅̅t = 𝐆𝑡𝐭.̅ Defining the 

displacement discontinuity vector ∆𝐔 = 𝐮+ − 𝐮− and imposing equilibrium of forces 𝐭+ + 𝐭− = 𝟎 at the crack 

surfaces, it is possible to rewrite (15) as: 

𝐇t𝐮t − 𝐆u𝐭u + [𝐇
+ +𝐇−]𝐮− + 𝐇+∆𝐔 = λ(𝐅̅t − 𝐅̅u) + [𝐆

+ − 𝐆−]𝐭+                                                                              (16) 

the cohesive model (14) can be introduced for governing the tractions 𝐭+: 𝐭+ = 𝐊(∆𝐔)∆𝐔, resulting in: 

𝐇t𝐮t − 𝐆u𝐭u + [𝐇
+ + 𝐇−]𝐮− + [𝐇+ − [𝐆+ − 𝐆−]𝐊(∆𝐔)]∆𝐔 = λ(𝐅̅t − 𝐅̅u)                                                                 (17) 

where the matrix 𝐊 collects the cohesive stiffness for all 𝑁∆𝒖 pairs of coincident collocation points at the crack 

surface: 

𝐊(∆𝐔) = [
𝑘11
1 𝑘12

1 𝑘11
2 𝑘12

2 ⋯ 𝑘11
𝑁∆𝒖 𝑘12

𝑁∆𝒖

𝑘21
1 𝑘22

1 𝑘21
2 𝑘22

2 ⋯ 𝑘21
𝑁∆𝒖 𝑘22

𝑁∆𝒖
]                                                                                                                (18) 
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The nonlinear system of equations defined in (17) can be rewritten in matrix format as: 

𝐌(∆𝐔)𝐗 = λ(𝐅̅t − 𝐅̅u)                                                                                                                                                                             (19) 

in which the matrix 𝐌 and the vector of unknowns 𝐗 are defined as: 

𝐌(∆𝐔) = [𝐇t −𝐆u 𝐇± (𝐇+ + 𝐆∓𝐊(∆𝐔))]                 𝐇± = [𝐇+ + 𝐇−]              𝐆∓ = [𝐆− − 𝐆+]                  (20) 

𝐗 = {

𝐮t
𝐭u
𝐮−

∆𝐔

}                                                                                                                                                                                                     (21) 

For a non-equilibrated state of unknowns (𝐗, 𝜆),the residue vector can be defined as: 

𝐑(𝐗, 𝜆) = 𝐌(∆𝐔)𝐗 − λ(𝐅̅t − 𝐅̅u)                                                                                                                                                       (22) 

The definition of the residue vector is the starting point for the development of the consistent linearization 

presented in the following. 

3.3 Consistent linearization and path-following constraint equation  

In order to perform a consistent linearization, the Taylor expansion of the residual is required: 

𝐑(𝐗 ,λ) = 𝐑(𝐗𝟎,λ0) +
∂𝐑

∂𝐗
|
𝐗=𝐗𝟎
λ=λ0

∆𝐗 +
∂𝐑

∂λ
|
𝐗=𝐗𝟎
λ=λ0

∆λ + θ(∆𝐗, ∆λ)                                                                                             (23) 

Considering that ∆𝐗 can be splited into prediction, ∆𝐗𝒑, and a correction, ∆𝐗𝒄, parts: ∆𝐗 = ∆𝐗𝑐 + ∆𝜆∆𝐗𝑝, it is 

possible to enforce the equilibrium approximating (23) just with the linear term and enforcing 𝐑(𝐗 ,λ) = 𝟎: 

𝐑(𝐗𝟎,λ0) +
∂𝐑

∂𝐗
|
𝐗=𝐗𝟎
λ=λ0

∆𝐗𝐜 + [
∂𝐑

∂𝐗
|
𝐗=𝐗𝟎
λ=λ0

∆𝐗𝐩 +
∂𝐑

∂λ
|
𝐗=𝐗𝟎
λ=λ0

] ∆λ = 𝟎                                                                                            (24) 

Since ∆𝜆 is an independent degree of freedom: 

∂𝐑

∂𝐗
|
𝐗=𝐗𝟎
λ=λ0

∆𝐗𝐜 + 𝐑(𝐗𝟎,λ0) = 𝟎                                                                                                                                                              (25) 

∂𝐑

∂𝐗
|
𝐗=𝐗𝟎
λ=λ0

∆𝐗𝐩 +
∂𝐑

∂λ
|
𝐗=𝐗𝟎
λ=λ0

= 𝟎                                                                                                                                                                (26) 

From (25) and (26) it is possible to obtain ∆𝐗𝐜 and ∆𝐗𝐩. An additional constraint equation is required to determine 

∆λ. The chosen equation is the direct control of one direction 𝒆𝑖 of 𝐗. Thus: 

𝒆𝑖 . 𝐗 = X̅            ⇒           𝒆𝑖 . 𝚫𝐗 = 0           ⇒          ∆λ = −
𝒆𝑖 . 𝚫𝐗𝑐
𝒆𝑖. 𝚫𝐗𝑝

                                                                                           (27) 

From ∆𝐗c, ∆𝐗p and ∆λ it is possible to obtain the improved solution: 

𝚫𝐗 = ∆𝐗c + ∆λ∆𝐗p                                                                                                                                                                                           

𝐗 = 𝐗0 + 𝚫𝐗                                                                                                                                                                                      

λ = λ0 +  ∆λ                                                                                                                                                                                                 (28) 

which must be used as a new guest for the equilibrium solution, i.e., 𝐗0 = 𝐗 and λ0 = λ, until the residue vector 
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is close enough to be null, according to a convergence criterion. The vector 𝜕𝐑 𝜕𝜆⁄  results 𝐅̅t − 𝐅̅u. On the other 

hand, the tangent matrix 𝜕𝐑 𝜕𝐗⁄  is derived in the following. 

3.4 Tangent matrix  

The residue can be previously presented in (22) can expressed as: 

𝐑(𝐗, 𝜆) = [𝐇t −𝐆u 𝐇± (𝐇+ + 𝐆∓𝐊(∆𝐔))] {

𝐮t
𝐭u
𝐮−

∆𝐔

} − λ(𝐅̅t − 𝐅̅u)                                                                              (29) 

𝐑(𝐗, 𝜆) = 𝐅u + 𝐅t + 𝐅u− + 𝐅Δu
− λ(𝐅̅t − 𝐅̅u)                                                                                                                                          

From (29), the tangent matrix results:  

𝜕𝐑

𝜕𝐗
= [

𝜕𝐑

𝜕𝐮

𝜕𝐑

𝜕𝐭

𝜕𝐑

𝜕𝐮−
𝜕𝐑

𝜕Δ𝐔
]                                                                                                                                                             (30) 

in which: 

𝜕𝐑

𝜕𝐮
=
𝜕𝐅u
𝜕𝐮

= 𝐇t                     
𝜕𝐑

𝜕𝐭
=
𝜕𝐅t
𝜕𝐮

= −𝐆u                                                                                                                                             

𝜕𝐑

𝜕𝐮−
=
𝜕𝐅u−

𝜕𝐮−
= 𝐇±                     

𝜕𝐑

𝜕Δ𝐔
=
𝜕𝐅Δ𝐔
𝜕Δ𝐔

= 𝐇+ +
𝜕(𝐆∓𝐊∆𝐔)

𝜕Δ𝐔
                                                                                          (31) 

The last derivative in (31) can be computed as: 

𝜕(𝐆∓𝐊(∆𝐔)∆𝐔)

𝜕Δ𝐔
= 𝐆∓𝐊 + 𝐆∓

𝜕(𝐊∆𝐔𝑐)

𝜕Δ𝐔
                                                                                                                                       (32) 

The subscript "𝑐" in ∆𝐔𝑐 indicates that the derivative is performed keeping ∆𝐔𝑐  constant: 

𝜕(𝐊∆𝐔𝑐)

𝜕Δ𝐔
=∑(Δ𝑢2𝑖−1  

𝜕𝐊2𝑖−1
𝜕Δ𝐔

+ Δ𝑢2𝑖  
𝜕𝐊2𝑖
𝜕Δ𝐔

)

𝑁∆𝒖

𝑖=1

                                                                                                                            (33) 

where Δ𝑢2𝑖−1 and Δ𝑢2𝑖 are the odd and even components of Δ𝐔, respectively. Analogously, 𝐊2𝑖−1 and 𝐊2𝑖 are the 

odd and even columns of 𝐊.  

𝐊2𝑖−1 = {
𝑘11
𝑖

𝑘21
𝑖 }                     𝐊2𝑖 = {

𝑘12
𝑖

𝑘22
𝑖 }                                                                                                                                                  (34) 

The derivatives in (34) reads: 

𝜕𝐊2𝑖−1
𝜕Δ𝐔

= [
𝜕𝐊2𝑖−1
𝜕Δ𝒖1

⋯
𝜕𝐊2𝑖−1
𝜕Δ𝒖𝑁Δ𝑢

]                     
𝜕𝐊2𝑖
𝜕Δ𝐔

= [
𝜕𝐊2𝑖
𝜕Δ𝒖1

⋯
𝜕𝐊2𝑖
𝜕Δ𝒖𝑁Δ𝑢

]                                                                  (35) 

where: 

𝜕𝐊2𝑖−1
𝜕Δ𝒖𝑗

=

[
 
 
 
 
𝜕𝑘11

𝑖

𝜕Δ𝑢𝑥
𝑗

𝜕𝑘11
𝑖

𝜕Δ𝑢𝑦
𝑗

𝜕𝑘21
𝑖

𝜕Δ𝑢𝑥
𝑗

𝜕𝑘21
𝑖

𝜕Δ𝑢𝑦
𝑗
]
 
 
 
 

                    
𝜕𝐊2𝑖
𝜕Δ𝒖𝑗

=

[
 
 
 
 
𝜕𝑘12

𝑖

𝜕Δ𝑢𝑥
𝑗

𝜕𝑘12
𝑖

𝜕Δ𝑢𝑦
𝑗

𝜕𝑘22
𝑖

𝜕Δ𝑢𝑥
𝑗

𝜕𝑘22
𝑖

𝜕Δ𝑢𝑦
𝑗
]
 
 
 
 

                                                                                                      (36) 

Regarding the derivative change rule: 
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𝜕𝑘𝑖𝑗

𝜕Δ𝑢𝑘
=
𝜕𝑘𝑖𝑗

𝜕Δ𝑢𝑛

𝜕Δ𝑢𝑛
𝜕Δ𝑢𝑘

+
𝜕𝑘𝑖𝑗

𝜕Δ𝑢𝑡

𝜕Δ𝑢𝑡
𝜕Δ𝑢𝑘

                                                                                                                                                            (37) 

in which de derivatives 𝜕𝑘𝑖𝑗 𝜕Δ𝑢𝑛⁄  and 𝜕𝑘𝑖𝑗 𝜕Δ𝑢𝑡⁄ = 0 are computed from (14). From the transformation 𝐑, one 

also notices that 𝜕Δ𝑢𝑛 𝜕Δ𝑢𝑘⁄ = 𝑛𝑘 and 𝜕Δ𝑢𝑡 𝜕Δ𝑢𝑘⁄ = 𝑡𝑘. Thus, (36) can be rewritten for the adopted cohesive model 

in terms of its normal cohesive stiffness derivatives as: 

𝜕𝐊2𝑖−1
𝜕Δ𝒖𝑗

=

[
 
 
 
 𝑛1

3
𝜕𝑘𝑛

𝑖

𝜕Δ𝑢𝑛
𝑗 𝑛1

2𝑛2
𝜕𝑘𝑛

𝑖

𝜕Δ𝑢𝑛
𝑗

𝑛1
2𝑛2

𝜕𝑘𝑛
𝑖

𝜕Δ𝑢𝑛
𝑗 𝑛1𝑛2

2
𝜕𝑘𝑛

𝑖

𝜕Δ𝑢𝑛
𝑗
]
 
 
 
 

                    
𝜕𝐊2𝑖
𝜕Δ𝒖𝑗

=

[
 
 
 
 𝑛1

2𝑛2
𝜕𝑘𝑛

𝑖

𝜕Δ𝑢𝑛
𝑗 𝑛1𝑛2

2
𝜕𝑘𝑛

𝑖

𝜕Δ𝑢𝑛
𝑗

𝑛1𝑛2
2
𝜕𝑘𝑛

𝑖

𝜕Δ𝑢𝑛
𝑗 𝑛2

3
𝜕𝑘𝑛

𝑖

𝜕Δ𝑢𝑛
𝑗
]
 
 
 
 

                                                  (38) 

the cosines 𝑛𝑖 in (37) are with respect to the 𝚪c
+ crack surface. Finally, the derivatives 𝜕𝑘𝑛

𝑖 𝜕Δ𝑢𝑛
𝑗⁄  can be computed 

from (10) and results: 

 
𝜕𝑘𝑛

𝑖

𝜕Δ𝑢𝑛
𝑗
= {

0
𝜕𝑘𝑛
𝜕Δ𝑢𝑛

(Δ𝑢𝑛
𝑖 )
     
if 𝑖 ≠ 𝑗
if 𝑖 = 𝑗

                                                                                                                                                            (39) 

 
𝜕𝑘𝑛
𝜕Δ𝑢𝑛

(Δ𝑢𝑛
𝑖 ) = {

−𝑐
∆𝑢𝑐𝑟

Δ𝑢𝑛
𝑖 2

0

        ∆𝑢0 ≤ Δ𝑢𝑛
𝑖 ≤ ∆𝑢𝑐𝑟

other wise
                                                                                                                          (40) 

4  Numerical results 

A tensile sheet with a vertical cohesive crack, illustrated in Figure 3, was used as an example to test and 

validate the formulation. Three boundary element meshes m1, m2 and m3, with 24, 48 and 96 elements, were 

adopted. 

 

 

Figure 3-Tensile sheet: Geometry and boundary conditions 

The adopted elastic constants were: E = 30 GPa and ν = 0.3. For the cohesive crack, the material parameters 

𝑘𝑛0 = 𝑘𝑡0 = 30𝐸
7GPa, 𝑓𝑡 = 3.0 MPa and 𝐺𝑓 = 0.015 MPa/m were adopted. A constant horizontal load patter is 

applied on the right side of the sheet in the form of an indirectly controlled load 𝐭 = λ𝐭,̅ in which 𝐭̅ = {1 0}TN/m 

and λ is the load factor. The left side of the sheet was kept constrained, i.e., 𝐮 = λ𝐮̅ = 𝟎. A plane stress condition 

and unit thickness are assumed for the sheet. The horizontal displacement 𝑢𝑥 = 0.0005 m was imposed for the 

point “a” in 100 steps using the path-following incremental-iterative process with a convergence tolerance of 10−4. 
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The force-displacement curves obtained for the three meshes are illustrated in Figure 4. The results shows that the 

structure bears force increments until it reaches a critical load, where the cohesive behaviour is activated, and the 

interface starts to open in mode I. The imposed displacement continues to increase, penalizing thus the cohesive 

stiffness (see Figure 5) until the end of the steps, when the structure will be deformed and all the points in the right 

side of the sheet dislocates approximately 0.0005 m in the x direction. 

 

Figure 4- Structural response at point “a”: λ versus 𝑢𝑥 

Figure 5 illustrates the cohesive response for the point “b” at the interface. The results show that the cohesive 

behaviour described in Eq. (10) was successfully imposed for the interface nodes. Thus, when Δ𝑢𝑛 ≤ ∆𝑢0, the 

normal and tangential tractions results t𝑛 = 𝑘𝑛0Δ𝑢𝑛, t𝑡 = 𝑘𝑡0Δ𝑢𝑡, and the structural behaviour is linear and very 

close to a non-cracked solid due to the high values adopted for 𝑘𝑛0 and 𝑘𝑡0. After this, the cohesive behaviour 

starts until Δ𝑢𝑛 = ∆𝑢𝑐𝑟, when a perfect crack surface appears, i.e., t𝑛 = t𝑡 = 0. 

 

 

Figure 5- Cohesive response at point “b”: 𝐾𝑛 versus ∆𝑢𝑛 
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Figure 6 shows the response for the tangential displacement discontinuity Δ𝑢𝑡 at points “c” and “d”, symmetrically 

positioned along the crack with respect to the central point “b”, with respect to the load factor λ. The smaller values 

of Δ𝑢𝑡 compared to Δ𝑢𝑛 and the symmetric response are in accordance with the expected mechanical response of 

this problem. Finally, for illustration purposes, Figure7 shows the displacements fields 𝑢𝑥, 𝑢𝑦  and the principal 

stress fields 𝜎1, 𝜎2 for a distribution of 306 points (96 boundary points and 210 internal points), which are computed 

in a post-processing phase. 

 

Figure 6- Brittle shear behaviour at points “b”, “c” and “d”: ∆𝑢𝑡 versus λ 
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Figure 7- Numerical fields a) 𝑢𝑥displacement b) 𝑢𝑦 displacement c) 𝜎1 principal stress d) 𝜎2 principal stress   

5  Conclusions 

A new cohesive dual boundary element formulation was developed for addressing crack propagation 

analysis. The main advantage of the formulations is that the cohesive law is introduced into the dual BEM 

equations by local cohesive stiffness, which degrades during the crack opening process. Within this framework, 

different cohesive laws, including damage-based ones for instance, could be easily account into the cohesive dual 

BEM. Besides, the dimensions of the dual BEM sub-matrices involved in the residue vector are kept constant 

throughout the hole crack propagation processes. A simple linear cohesive model is adopted to illustrate and 

validate the formulation. A path-following incremental iterative method with constraint equation that imposes the 

direct control of one direction of the unknown boundary values is adopted to solve the nonlinear system of 

equations. One example was presented to validate the formulation for cohesive crack propagation analysis. The 

results showed that the proposed approach can efficiently capture the equilibrium curves and the cohesive 

responses. 
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