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Abstract. A micromechanics-based formulation of the macroscopic behavior of saturated jointed rocks regarded
as homogenized anisotropic poroelastic media is presented. At the material level, the rock matrix forming the
skeleton phase of the porous medium is assumed to be linear elastic, whereas the crosscutting joints stand for
the porous space and are viewed as planar interfaces endowed with a specific generalized poroelastic behavior.
The effective anisotropic poroelastic properties, including the homogenized drained elastic stiffness tensor C, Biot
tensorB, Biot modulus M, as well as the permeability tensorK of the jointed medium are derived. At the structure
level, the consolidation problem of a jointed rock layer is addressed in a one-dimensional setting with anisotropic
flow conditions introduced by joints orientations. For verification purpose, the analytical predictions derived from
the analysis are compared with finite element solutions implementing the effective constitutive state equations,
thus emphasizing that the analytical predictions can be viewed as reference solutions.
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1 Introduction

Understanding of the hydromechanical behavior of fractured rock media is a key aspect for safety and stability
evaluation of large engineering rock works such as rock slopes, waste disposal repositories, dam foundations,
underground excavations, as well as assessment of the transport of fluid or contaminants, exploitation wells for
extraction of underground water and hydrocarbons, foundations of geothermal, thermal, hydroelectric and nuclear
power plants, and so on. The increasingly common land subsidence effects, triggered by extraction of large
amounts of water and/or oil from natural resources reservoirs (Jones and Addis [1], Gambolati et al. [2]), and the
consequent effect in recovery capacity of such natural resources, as well as social connected problems, demonstrate
the relevance of coupled hydromechanical modeling for jointed rock media. When rock matrix permeability is
low, the fractures present in the rock mass, usually referred to as joints, form connected networks that serve
as preferential channels for fluid flow, as well as surfaces where the mechanical properties of the rock matrix
degrade. Therefore, design analyses involving saturated rock masses, from a geomechanical point of view, need to
incorporate an accurate and comprehensive modeling for the joints through a poromechanical coupling.

Over the last few decades, efforts have been made to study and characterize the behavior of jointed rock
masses, both via semi-empirical approaches based on rock mass classification systems and coupling strength,
deformation, and permeability of jointed rock masses (Deere and Miller [3], Hoek and Brown [4]). In general,
most representative works concerning hydromechanical coupling in rock joints are focused on the connection
between normal or shear loading/unloading effect on the joint permeability (Witherspoon et al. [5], Tsang and
Witherspoon [6], Bandis et al. [7], Barton et al. [8], Oda [9]). In such approaches, the effect of fluid pressure
filling the joints is usually neglected or considered indirectly by variations in joint hydraulic opening as a function
of stress level. Poromechanical models for joints behavior are still relatively rare in the literature (Ng and Small
[10], Bart et al. [11]).

Since rock joint and rock matrix behavior are determined and modeled separately, the assessment of represen-
tative constitutive models for each individual behavior of rock joints and rock matrix is usually not a simple
task. The numerical modeling and implementation for analysis and evaluation of structures on jointed rock is
traditionally performed explicitly, introducing individual joints in a impermeable/permeable, deformable/rigid
rock matrix, and enabling consideration of complex fracturing patterns (Goodman [12], Cundall [13]). However,
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the denser the fracture network, or when there is a need for full-scale modeling of rock masses and natural
reservoirs, such an explicit approach may become computationally unfeasible by current computational standards.
Implicit homogenization approaches, on the other hand, were conceived as an alternative to discrete explicit
approaches, based on the idea that a heterogeneous medium, such as a jointed rock mass, can be treated at the
macroscopic scale as a continuous and homogeneous medium (Zaoui [14]). The well-known Hoek and Brown
[15] empirical strength criterion for jointed mass, for instance, takes advantage of this idea in a purely macroscopic
phenomenological approach.

Aiming to derive the jointed rock mass effective poroelastic behavior from those of the rock matrix and rock
joints, Maghous et al. [16] proposed a micromechanical approach to the poroelastic behavior of jointed rocks by
assuming rock joints as forming the porous space of the rock mass, with their behavior governed by a poroelastic
interface constitutive law analogous to the classical poroelastic state equations of an ordinary porous medium (Bart
et al. [11]). Starting from the local behavior of the rock matrix as an elastic solid and joints modeled as generalized
porous media, the upscaling process allows the effect of fluid pressure in the interstitial rock joint space to be
taken into account in the effective macroscopic behavior, as well as rock joint pore volume changes. The classical
effective poroelastic state equations are derived with effective poroelastic parameters determined from rock matrix
elastic parameters, rock joint stiffness, generalized rock joint Biot coefficient and Biot modulus, spatial distribution
and orientation.

In modeling jointed rock masses as porous media, the classic consolidation problem needs to be addressed. As
jointed rock masses are generally anisotropic, both mechanically and hydraulically, it is expected that the solution
to the consolidation problem in fractured media takes this aspect into account. Analytical and semi-analytical
solutions were presented in the literature for transversely isotropic soils with respect to the hydraulic behavior,
and isotropic mechanical behavior (Booker and Randolph [17], Ai and Wu [18], Rani et al. [19]), as well as some
numerical approaches to the problem in jointed rocks (Sasaki and Morikawa [20]).

In that context, this article aims to present analytical solution for particular cases of mechanically isotropic
and hydraulically anisotropic jointed rock masses under one-dimensional consolidation. Jointed rock masses
crosscut by one and two joint sets, as well as for randomly oriented joint sets are considered. The latter, however,
results in a fully isotropic poroelastic medium, and serves as a verification problem for an ad hoc numerical finite
element implementation.

2 Effective Poroelastic Properties and Permeability of Jointed Rocks

Consider a rock mass crosscut by sets of long joints. Based on micromechanical principles (Zaoui [14])
a representative elementary volume (REV) can be defined for the jointed rock mass provided conditions for
separation of scales holds. In other words, the characteristic size of the joints, identified as the average spacing
between joints of a given set ω (d) must be much smaller than the characteristic size of the REV (ℓ). Further, the
characteristic size of the REV must be much smaller than the characteristic dimension of the macroscopic structure
under consideration (L). Summing up, we must have d≪ ℓ≪ L.

In this sense, considering joints as the connected porous space of a jointed rock mass and assuming a
generalized poroelastic behavior for the joints, Maghous et al. [16] presented a micromechanical formulation
for the effective poroelastic properties of rock masses, crosscut by planar long joints, from those of the individual
constituents (rock matrix stiffness Cs and compliance Ss fourth order tensors, normal kn and tangential kt joint
stiffness – assembled in a joint stiffness second order tensor k, joint Biot modulus m and joint Biot coefficient α).
Joints distribution is defined by spatial orientation, defined by its normal unit vector n, and by joint average spacing
d. Although it is a well-known and used result Goodman [21], the Authors rigorously derived the localization
problem giving the effective elastic compliance tensor S as the sum of rock matrix (Ss) and joint sets (Sωj )
contributions. Other effective poroelastic parameters (Biot tensor B and Biot modulus M) are readily determined
from characteristics of the rock matrix, joints, as well as from effective drained elastic moduli tensors. It is worth
to note that, when scale separation is ensured, C ≈ S−1.

Based on the same arguments ensuring validity of the micromechanical reasoning, Borges and Maghous [22]
presented the effective intrinsic permeability or, equivalently, the permeability tensor K for rock masses cut by
long joints, considering permeable or impervious rock matrix crosscut by long joints.

Both micromechanical formulations allow consideration of either discrete or randomly oriented joint sets.

3 One-dimensional consolidation problem of a jointed rock layer

Consider an infinite half-space of jointed rock mass with thickness h resting on a rigid impervious base
(x3 = h) and subjected to an uniform surface load increment (∆σ33 = −q at x3 = 0) as shown in Fig. 1.
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When such a jointed rock layer, modeled as homogeneous porous material, is subjected to an additional
load with respect to gravity, the saturating fluid undergoes an increment of fluid pressure (pore pressure) ∆p.
Subsequently, pore pressure continuously vanish due to fluid diffusion towards the drained surface, while the
mechanical load is progressively transferred to solid skeleton, thus resulting in upper surface settlement.

1n2nJointed Rock Mass

(a) (b) (c)

and

n

Figure 1. Consolidation of a jointed rock mass considering (a) one joint set (b) two joint sets, and (c) randomly oriented joint
sets – isotropic joint distribution.

For the sake of simplicity, analytical and numerical results for the three cases of one-dimensional consolidation
of a jointed rock mass with isotropic poroelastic and anisotropic hydraulic behavior are presented (cases of Fig. 1a,
b and c). Under one-dimensional consolidation conditions, pore pressure p and displacement u are functions of
depth only (p = p(x3) and u = u(x3)e3). Consequently, the second order strain tensor, volumetric strain, and
pore pressure gradient are, respectively, given by ε = ∂u/∂x3e3⊗e3, εv = tr ε = ∂u/∂x3, and ∇p = ∂p/∂x3e3.

Assuming small perturbations hypothesis, the macroscopic poroelastic state equations governing the skeleton
behavior reads:  ∆σ = C : ε−B∆p (a)

∆ϕ = B : ε+∆p/M (b)
(1)

where σ and ε are, respectively, the macroscopic stress and strain tensors, and ϕ is the Lagrangian porosity.
The fluid flow is macroscopically governed by Darcy’s Law:

Q = −K · ∇ (∆p) , (2)

where Q is the macroscopic filtration or specific discharge vector. The fluid continuity equation reads:

∂ϕ

∂t
+ divQ = 0. (3)

Substituting Darcy’s Law (eq. (2)) and the second poroelastic state equation (eq. (1b)) in the fluid continuity
equation (eq. (3)), the coupled equation governing the fluid diffusion through a porous medium is obtained as:

B :
∂ε

∂t
+

1

M
∂p

∂t
= K : ∇ [∇ (∆p)] . (4)

The one-dimensional consolidation problem of a fully isotropic porous medium (C = λ1⊗1+2µI, B = b1,
and K = K1), considering geometry and boundary conditions as expressed in Fig. 1, is a well-known textbook
problem in poromechanics (Coussy [23]). The solution for fully isotropic case, in terms of pore pressure excess,
can be expressed as:

∆p(x3, t) =
4bMq

λ+ 2µ+ b2M

∞∑
n=0

1

(2n+ 1)π
sin

[
(2n+ 1)π

2h
x3

]
exp

[
− (2n+ 1)2π2cf

4h2
t

]
. (5)

where cf = KM(λ+ 2µ)/(λ+ 2µ+ b2M) is known as the diffusion/consolidation coefficient.
After the instantaneous load increment application ∆σ33 = −q at the upper surface (x3 = 0), equilibrium

in the vertical direction requires ∆σ33(x3) = −q (∀x3). So, considering the first poroelastic state equation (eq.
(1a)), the equilibrium condition (div∆σ = 0), and the fact that displacement u is purely vertical, it can be shown
that:

∂u

∂x3
(x3, t) =

q

λ+ 2µ

(
b

q
∆p(x3, t)− 1

)
. (6)
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Integrating eq. (6) over depth and considering that u(h, t) = 0 (Fig. 1) provides:

u(0, t) = s(t) = s∞ + (s0 − s∞)

∞∑
n=0

8

(2n+ 1)
2
π2

exp

[
− (2n+ 1)

2
π2cf

4h2
t

]
, (7)

where s0 and s∞ are, respectively, the instantaneous (undrained) and long-term (drained) settlements, given by:

s0 =
qh

λ+ 2µ+ b2M
; s∞ =

qh

λ+ 2µ
, (8)

and s(t) is the settlement of the upper surface.
As the pore pressure gradient is a function only of x3, it can be seen from eq. (4) that, even in the fully

isotropic case, the only component of the permeability tensor left from right-hand size operation is K33. In other
words, in the one-dimensional consolidation problem defined in Fig. 1, the only permeability tensor component
involved is K33.

It can be shown that, referring to cases (a) and (b) in Fig. 1, when anisotropic hydraulic behavior and identical
joint sets characteristics are assumed, consolidation will be one-dimensional only if Case (a) ψ = π/2 (‘vertical’
joint set); Case (b) β = π−2ψ (joint sets symmetrically oriented with respect to the ‘vertical’). A particular feature
referring to Case (b) is that, when perpendicular joint sets are considered (β = π/2), the permeability tensor turns
out to be independent of ψ. Case (c) results in isotropic hydraulic behavior, since joint sets are randomly oriented,
and therefore, isotropic distributed in space.

Complying with the stated conditions for one-dimensional consolidation in cases (a) and (b), the solution for
all three cases considered in Fig. 1, as well as for the particular Case (b) when joint sets are perpendicular to each
other, have the same form of that given in eq. (5). The only difference is the use of the respective K33 component
of K, since K is no longer isotropic (except in Case (c)).

Based on Borges and Maghous [22], K33 permeability component calculated for particular case (a) and (b)
stated above reads:

K33 = f
[
k
(1)
t sin2 ψ + k

(2)
t sin2 (ψ + β)

]
, (9)

where k(1)t and k(2)t stand, respectively, for the tangential joint permeability of the joint sets 1 and 2 (when it’s
present), and f stands for the volume fraction of individual joint sets. For case (c), considering an unique tangential
permeability kt for randomly oriented joint sets, it reads:

K33 = K =
2

3
fkt. (10)

These analytical results can be used as a benchmark for verification of numerical implementations of two-
and three-dimensional codes in coupled poroelasticity with anisotropic hydraulic behavior. It is noted that short-
(undrained) and long-term (drained) solutions do not depend on joint permeability. The only difference between
cases is the time needed for reaching long-term regime, which is affected byK33 value. Defining the characteristic
consolidation time as τ = h2/cf , it can be readily seen that the only changing parameter on eq. (5) is the relevant
permeability coefficient for each case.

4 Numerical Simulations

The micromechanical formulations for the hydromechanical behavior of jointed rock (Maghous et al. [16],
Borges and Maghous [22]) were recently implemented in a version of a three-dimensional finite element numerical
code originally developed in Brüch [24] for isotropic effective behavior.

In order to verify the numerical implementation and demonstrate the analytical solution presented in section 3,
a number of one-dimensional numerical simulations of mechanically isotropic jointed rock medium with anisotropic
hydraulic behavior were performed. The finite element procedure used in assessing the evolution of the jointed
rock mass, adapted to anisotropic poroelasticity, is found in Bernaud et al. [25]. Hexahedral 20-node elements are
used for geometry discretization with piece-wise quadratic polynomial function for displacement approximation,
superposed with 8-node elements with linear function for pore pressure approximation. The resulting global
equation system is expressed as: [KUU] [KUP]

[KPU] [KPP]

{U}

{P}

 =

{FU}

{FP}

 (11)
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where [KIJ] are the global stiffness sub-matrices, {FI} the global force sub-vectors, while {U} and {P} are,
respectively, the nodal displacement and pore pressure global vectors.

In one-dimensional consolidation, a single column of elements is enough to simulate the process as an infinite
horizontal layer. Therefore, the numerical model constructed to simulate the cases considered in Fig. 1 consists in
a column of jointed rock h = 6 km high, with a square base parallel to (x, y) plane and horizontal side of h/60.
Vertically, the finite element mesh divides the column in 60 equal parts (60 finite elements in total), forming a
regular mesh with cubic elements of h/60 side. All vertical boundaries are impervious and horizontally restrained
(u·ei = Q·ei = 0 (i = x, y)), while at the bottom no fluid flow or displacement is allowed (u·ez = Q·ez = 0). An
uniformly distributed loading q = 10 MPa is instantaneous applied at the upper surface of the model maintaining
drainage (p = 0).

Numerical simulations were performed considering the effective poromechanical medium as isotropic, with
λ = 4.0 GPa, µ = 4.0 GPa (E = 10 GPa and ν = 0.25), b = 0.75, and M = 20 GPa. The settlement of
the upper surface and excess pore pressure dissipation during the consolidation process is presented in Fig. 2 for
the three cases considered. The instantaneous and long-term settlements, calculated by eq. (7), results s0/h =
4.30 × 10−4 and s∞/h = 8.33 × 10−4. In Fig. 2, continuous lines refer to analytical solution, whereas markers
refer to finite element predictions.
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Figure 2. Analytical solution and numerical simulations results for settlement (a) and excess pore pressure dissipation at
z = h/2 (b) during consolidation process of a jointed rock mass layer with h = 6 km high and superficial water table.

In addition, in order to verify the numeric implemented formulation for the effective properties of jointed
rocks with randomly oriented joint sets in poroelasticity, Case (c) has been also numerically simulated with
effective poroelastic parameters calculated using the micromechanical formulation presented in Maghous et al.
[16]. In the numerical implementation, user inputs rock matrix elastic parameters (Es, νs), joint stiffness kn and
kt, average spacing d, joint Biot coefficient α, joint Biot modulus m, and joints volume fraction f . The effective
poroelastic parameters (λ, µ, b, and M) are automatically calculated during processing. A randomly oriented
joint distribution results in a isotropic effective hydromechanical behavior, with effective poroelastic parameters
calculated as:

λ = 3knd
2µs (3λs + 2µs) (kn − kt) + 15λsknktd

(2µs (3kn + 2kt) + 15knktd) (3λs + 2µs + 3knd)
, (12)

µ = µs 15knktd

2µs (3kn + 2kt) + 15knktd
, (13)

b = α
3λs + 2µs

3λs + 2µs + 3knd
, (14)

M =

(
1

m d
+

3α2

3λs + 2µs + 3knd

)−1

, (15)

and permeability coefficient given in eq. (10).
In this configuration that falls within Case (c), the rock matrix elastic parameters were assumed as λs =

10.0 GPa, µs = 10.0 GPa (Es = 25 GPa and νs = 0.25), while joints parameters as α = 1.0, and m = 30 GPa,
kn = 5.0 GPa/m, kt = 2.0 GPa/m, and d = 1.0 m. The effective poroelastic parameters calculated by eqs. (12)
to (15) results in λ = 1.96 GPa, µ = 2.83 GPa (E = 6.82 GPa and ν = 0.20), b = 0.77, and M = 12.58 GPa.
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For this case, analytical solution and the numerical simulations results are also shown in Fig. 2. The respective
instantaneous and long-term settlement calculated are s0/h = 6.63× 10−4 and s∞/h = 1.31× 10−3.

For all cases, with respect to the relevant hydraulic parameters, e = 5 mm, and d = 1.0 m were adopted.
Also, the rock matrix unit weight was set as ρs = 3,000 kg/m3 and fluid unit weight as ρf = 1,000 kg/m3. The
joint tangential permeability for all joint sets was taken as kt = 2.08×10−3 m2/(Pa·s). As the gravitational forces
are constant and no external horizontal forces of any kind are considered, the uniform superficial load increment q
is the only involved in the consolidation process.

Regarding the analytical solution presented in Fig. 2, as expected, when the mechanical effects due to the
presence of joints are not taken into account, the same instantaneous (undrained) and long-term (drained) response
is obtained in all cases (a), (b) and (c). The only difference is the transient response, function of the permeability
coefficient K33 for each case considered. Regarding the numerical results, a very good agreement between them
and the analytical solution were obtained using a fairly coarse finite element mesh, even for early times.

The degradation caused by the presence of the joints on the overall hydromechanical mechanical behavior
of a consolidating jointed rock mass can be verified comparing the overall response presented for case (c) and
its variation accounting for joints degradation in Fig. 2. It can be seen that degradation of the poromechanical
properties is reflected both in the computed displacements and time required to reach the long-term regime.

5 Conclusions

Analytical solution of one-dimensional consolidation problem for particular cases of rock masses crosscut
by long planar joints were given, taking the jointed rock mass under consolidation as mechanically isotropic and
hydraulically anisotropic. Three simple cases were considered taking jointed rock masses crosscut by one and two
joint sets, as well as by randomly oriented joint sets. The conditions for one-dimensional consolidation were stated,
and the difference between the solution for the considered cases and that of a fully isotropic medium outlined. This
analytical solution can serve as a benchmark to verification of numerical implementation of codes in anisotropic
linear poroelasticity.

The hydraulic behavior of the effective jointed medium was determined through a micromechanical approach,
considering impermeable rock matrix and joints tangential permeability. Classically, the joints tangential permeabi-
lity may be estimated based on the plane Poiseuille flow (cubic-law). Explicit analytical expressions were also
given for the effective poroelastic parameters of a jointed rock with randomly oriented joint sets based on the
micromechanical formulation of Maghous et al. [16].

For the one-dimensional consolidation problem of jointed rock masses, it has been identified that the relevant
permeability coefficient is the only changing variable considering the solution for fully isotropic case. Disregarding
the poromechanical degradation due to the joints, the difference between the results occurs only in the time
required for the consolidation process to finish. Considering poromechanical degradation due to joints, however,
its relevance for the complete characterization of the poroelastic response of a rock mass in consolidation is
highlighted. Practical application of these results would be, for instance, to problems involving foundation settle-
ment under loads, time-dependent behavior of embankments, dams, wells, as well as underground excavations,
underground military facilities, etc.

In order to perform a verification of an in house finite element implementation in anisotropic poroelasticity,
several numerical simulations were performed and the results plotted against the given analytical solution for
the one-dimensional consolidation problem of jointed rocks. The numerical results are in line with the given
analytical solution, ensuring and verifying the correct numerical implementation of the finite element formulation,
both for anisotropic flow and for the implemented poroelastic and hydraulic behavior of randomly oriented joint
sets. The analytical solution of the consolidation problem for a fully anisotropic jointed rock mass, as well as
related numerical examples, will be the subject of a forthcoming article.
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[25] Bernaud, D., Deudé, V., Dormieux, L., Maghous, S., & Schmitt, D. P., 2002. Evolution of elastic properties in
finite poroplasticity and finite element analysis. Int. J. for Num. & Analyt. Methods in Geomech., vol. 26, n. 9, pp.
845–871.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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