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Abstract. Originally proposed at the end of the 80 ’s, the Modified Local Green’s Function Method (MLGFM) is
an integral method that was described as a hybrid of the Finite Element Method (FEM) and the Boundary Element
Method (BEM). The method was proposed to apply the BEM methodology to problems with no knowledge of
the fundamental solution. Essentially, the MLGFM creates discrete projections of the Green’s function solving
an auxiliary domain problem, and this problem can be solved, for example, by the FEM formulation. Despite the
good convergence of the secondary variable in the boundary, the method has a major disadvantage over FEM, the
obtainment of the Green’s function projections implies in to solve the system of equations in the domain, resulting
in a great computational effort. However, this paper aims to show a new approach to the MLGFM where it is
not necessary to obtain the Green’s projections and the final equations system has the same number of degrees
of freedom as FEM and still presents high convergence for the secondary variable in the boundary. The new
formulation can be obtained directly by the weighted residual sentence and variables using the same approximation
of the original MLGFM. The processing time of the two approaches are compared and the method is applied to
Poisson Equation.

Keywords: Green Functions, Modified Local Green’s Function Method, Finite Element Method, Boundary Ele-
ment Method

1 Introduction

Originally proposed in Barcellos and Silva [1], the Modified Local Green’s Function Method (MLGFM)
is an integral method described as a hybrid of the Finite Element Method (FEM) and the Boundary Element
Method (BEM). The method was proposed to apply the BEM methodology to problems with no knowledge of
the fundamental solution. Essentially, the MLGFM creates discrete projections of the Green’s function solving an
auxiliary domain problem, its problems can be solved, for example, by the FEM.

The MLGFM has been applied to solve several continuum mechanics problems over the years, for exam-
ple, membranes by Barcellos and Silva [1], singular Poisson problems by Barcellos and Barbieri [2], h- and p-
convergence of Helmholtz equation by Filippin [3], Mindlin’s plates by Barbieri and Barcellos [4], non-homogeneous
potentials problems by Barbieri and Barcellos [5], laminated plates by Machado and Barcellos [6], Machado et al.
[7], and Machado et al. [8], for 3D elasticity by Barcellos et al. [9], and Anisotropic Heat Conduction by Muñoz-
Rojas and Vaz Jr. [10]. According to Barbieri and Muñoz [11], the MLGFM demonstrated great accuracy and high
convergence rates, especially in terms of fluxes on the boundary.

Despite the good convergence of the flux variables in the boundary, the method has a major disadvantage over
FEM, the obtainment of the Green’s function projections implies solving many systems of equations in the domain,
resulting in a great computational effort. This fact will become clearer in MLGFM equations in the next sections.
However, this paper aims to show a new approach where it is not necessary to obtain Green’s projections and the
final equations system has the same number of degrees of freedom as FEM. The new approach of the method still
presents high convergence for the flux variables in the boundary.
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2 The MLGFM original formulation

Assuming there is a differential operator L and two associated operators D and N related to Dirichlet and
Neumann boundary conditions, respectively. The method consists of finding the Green tensor projections solving
an auxiliary problem in domain related to adjunct operatorsL∗ andN∗. To solve this auxiliary problem is necessary
to define an additional operator N ′ (for more details see Barbieri et al. [12]) and define a new variable:

f(p) = (N +N ′)u(p), (1)

where u(p) is the potential in boundary.
The additional operator allows writing the system of integral equations as:

u(Q) =

∫
Ω

GT (P,Q) b(P ) dΩP +

∫
Γ

GT (p,Q) f(p) dΓp; Q,P ∈ Ω and p ∈ Γ, (2)

where G(·,·) is the Green’s tensor, b(P ) is the domain source, f(p) is the flux in boundary, u(Q) is the potential
in domain and P and Q are a source point and a field point in domain, respectively.

To extend this integral equation to boundary, the trace operator is applied:

u(q) =

∫
Ω

GT (P, q) b(P ) dΩP +

∫
Γ

GT (p, q) f(p) dΓp; P ∈ Ω and p, q ∈ Γ, (3)

were u(q) is the potential in boundary and p and q are a source point and a field point in boundary, respectively.
Approximating domain and boundary variables using domain Ψ and boundary Φ basis functions, in the form:

u(Q) = Ψ(Q) uD u(q) = Φ(q) uB

b(P ) = Ψ(P ) b f(q) = Φ(p) f
. (4)

where uD and uB are vectors containing the nodal values of the function u in domain and in boundary, respectively;
b is a vector containing the nodal values of the domain source b(p); and f is a vector containing the nodal values
of the normal flux in the boundary.

The basis functions are the FEM and BEM traditional functions. Here these functions are the bilinear FEM
shape for domain and linear functions for boundary. Note that the boundary functions need to be a trace of the
domain functions, or:

Φ(q) = lim
Q→q

Ψ(Q); q ∈ Γ and Q ∈ Ω. (5)

The equations (2) and (3) can be rewritten as:

A uD = B f + C b, (6)

D uB = E f + F b, (7)

where:

A =

∫
Ω

ΨT (Q) Ψ(Q) dΩQ; (8)
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B =

∫
Ω

ΨT (Q) Gb(Q) dΩQ; (9)

C =

∫
Ω

ΨT (Q) Gd(Q) dΩQ; (10)

D =

∫
Γ

ΦT (q) Φ(q) dΓq (11)

E =

∫
Γ

ΦT (q) Gb(q) dΓq (12)

F =

∫
Γ

ΦT (q) Gd(q) dΓq (13)

where Gb(Q), Gd(Q), Gb(q) and Gd(q) are the Green’s function projections over the boundary Γ and the domain
Ω, evaluated on the points Q and q. The Green’s projections can be written as:

Gb(Q) =

∫
Γ

GT (p,Q) Φ(q) dΓp, (14)

Gd(Q) =

∫
Ω

GT (P,Q) Ψ(P ) dΩp, (15)

Gb(q) =

∫
Γ

GT (p, q) Φ(q) dΓp, (16)

Gd(q) =

∫
Ω

GT (P, q) Ψ(P ) dΩp. (17)

The Green’s tensor projection can be also projected in the space formed by the domain and the boundary
shape functions:

Gd(Q) = Ψ(Q) GDQ Gd(q) = Φ(q) GDq

Gb(Q) = Ψ(Q) GBQ Gb(q) = Φ(q) GBq
. (18)

where GDQ, GDq, GBQ and GBq are the nodal coefficients of the Green Tensors project in the space formed
by domain and boundary shape functions. Its values can be determined by the minimization of an appropriate
functional (see Barbieri et al. [12]), resulting in the expression:

[KFEM + K′]
[
GDQ |GBQ] = [A |D] , (19)

where KFEM is the FEM stiffness matrix, K′ is a diagonal matrix related to additional operator N ′, A and D are
the matrix defined in (8) e (11). The values of GDq and GBq can be determined by the application of the trace
operator in GDQ and GBQ.

Once the Green’s functions are obtained, all the matrices necessary for the solution of the eq. (7) are obtained
and the boundary values are obtained. The domain values can be obtained directly with the following expression:

uD = GBQf + GDQb. (20)
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3 The MLGFM new formulation

Applying the Green’s theorem in a generically variational boundary-value problem, its possible to find a
expression like:

B (u,w)−
∫

Γ

N uw dΓ =

∫
Ω

bw dΩ. (21)

where B (·,·) is a bilinear form associated to the differential operator L and w are the weighting functions.
The expression in eq. (21) is simply the Galerkin weak form. Now defining the boundary flux variable as:

f(p) = Nu(p), (22)

employing the approximations for the variables define in eq. (18) and using the domain basis functions as weighting
functions w, the expression in eq. (21) becomes in:

B (Ψ(P ),Ψ(P )) uD =

∫
Γ

ΨT (p) Φ(p) dΓ f +

∫
Ω

Ψ(P )T Ψ(P ) dΩ b, (23)

where the bilinear form B (·,·) is the same related to the FEM stiffness matrix. Recognizing the matrices A and
the D (the functions Φ are the trace of Ψ), the expression is reduced to:

KFEM uD = D f + A b, (24)

and this system can be solved similarly to the Boundary Element Method.
Disregarding the effects of the additional operator N ′, its possible to write:

KFEM GDQ = A or GDQ = K−1
FEM A; (25a)

KFEM GBQ = D or GBQ = K−1
FEM D; (25b)

In other words, the Green’s functions are implicitly presented in the new formulation final system.
This new approach to the MLGFM avoids the need to find the GBQ and GDQ tensors. Note that the eq. (19)

is composed of several systems of equations since A and D, in right-hand side of this equation, are matrices, not
vectors. The new approach needs to solve only one system of equations and maintains the same properties of the
original approach.

4 Numerical model

This example is a square membrane with edge L, subject to a domain source b(x, y). The governing equation
of this problem is:

∇2u (x, y) = − x
L

cos
π y

L
; (26)

with the follow boundary conditions:

u (0, y) = u (L, y) = 0 0 ≤ y ≤ L; (27a)

∂u

∂n

∣∣∣∣
y=0

=
∂u

∂n

∣∣∣∣
y=L

= 0 0 ≤ x ≤ L. (27b)
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The analytical solution for potential u (x, y) is given by Loeffler et al. [13]:

u (x, y) =

[
L

π2 sinhπ
sinh

π x

L
− x

π2

]
cos

π y

L
. (28)

The error measure for potential in domain is taken as an approximation of L2-norm error normalized by
|u|max, defined in Khan et al. [14] in the form:

εer =
1

|u|max

√√√√ 1

M

M∑
i=1

(
u

(e)
i − u

(n)
i

)2

, (29)

where M is the number of nodes, |u|max is the maximum value on the M sample nodes, u(e)
i is the exact value on

node i and u(n)
i is the approximate value on node i.

Firstly to show the difference of processing times between the old and the new approach, the processing time
for models with increasing number of elements in the mesh are presented in Fig. 1. The computational routines
are implemented using the Python© language.
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Figure 1. Comparison of processing time of two approaches of the MLGFM.

Figure 1 shows that as more refined the mesh, greater the savings in processing time for the new approach.
The new approach equation system has the same numbers of degrees of freedom as FEM, which makes the new
approach more competitive compared to the original formulation.

The comparison between MFGLM and FEM is presented in Fig. 2. As can be observed the errors of MLGFM
are smaller than FEM ones and the convergence rate is almost the same.

The flux in x-direction on the face with x = 1 is obtained directly in MLGFM by solving the system in
eq. (24) and in FEM a Least Square procedure is used to recover the flux. The comparison between the MLGFM
and FEM for a coarse mesh (5x5) is presented in Fig. 3. As can be observed, even for a coarse mesh the nodal
values of flux in MLGFM are almost exact. Mendonça [15] demonstrated that if the nodal values of Green’s
functions obtained in MLGFM are exact the flux results are also exact.

5 Final remarks

A new approach for the MLGFM is presented in this paper. The new approach reduces significantly the
processing time of the MLGFM original formulation. This new approach avoids obtaining the Green’s projections,
reducing the original processing time.
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Figure 2. Comparison between MLGFM and FEM on L2 error norm for domain source example.
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Figure 3. Comparison between MLGFM and FEM flux results in x-direction for domain source example.

The new approach processing time is similar to the FEM, so the MLGFM is more competitive when compared
to the FEM. The new formulation maintains the main feature of the MLGFM, presenting good convergence of the
flux variables in the boundary of the studied domain. The next step of this research is to bring the enrichment
technique, based on GFEM, to the new approach of the MLGFM.
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[12] R. Barbieri, P. A. R. Muñoz, and R. D. Machado. Modified local green’s function method (MLGFM) part
i. mathematical background and formulation. Engineering Analysis with Boundary Elements, vol. 22, n. 2, pp.
141–151, 1998.
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