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Abstract. This paper presents an elastic two-dimensional analysis of columns stability, using an extension of the
material point method (MPM), called convected particle domain interpolation (CPDI). As instability phenomena
require a large-deformation study, MPM is chosen by its ability to deal with this situation, using a simple and reg-
ular cartesian background grid to calculate the spatial gradients and divergences, besides automatically considers
explicit dynamics. The CPDI extension is applied in order to facilitate natural boundary conditions treatment and
to avoid the cell-crossing error, since the subdomains are explicitly tracked through the analysis and the shape func-
tions have continuous derivatives into these subdomains. A computational routine is implemented using Python
3 language, employing Euler-Gauss explicit time integration and update-stress-last (USL) scheme. A rectangular-
section slender column is submitted to 4 different load cases. The results obtained are the load-displacement
behavior of the columns and its total mechanical energy time variation, which are validated by comparison with
the results produced by classic analytical Euler’s theory. It can be verified, after the analyses, that CPDI MPM is
able to predict the columns buckling loads and to reproduce the post-critical instability phenomena with a good
accuracy. The conservation of energy is achieved in all tests.
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1 Introduction

Elastic instability, also named buckling, is a highly nonlinear phenomena and occurs when a slender axially
loaded column fails due to an abrupt change in the equilibrium state. Because of the high degree of nonlinearity,
an accurate numerical analysis of buckling and post-critical behavior requires a method able to solve Continuum
Mechanics equilibrium equations taking into account large strains. In these terms, Material Point Method (MPM),
firstly published by Sulsky et al. [1], has produced good results when applied to complex problems involving large
deformations [2–5], although an study of buckling phenomena has not yet been done. In view of this, this work
aims to analyze the elastic stability of a column - buckling loads and post-critical behavior - using a computational
algorithm, implemented in Python 3 [6] language and based on an extension of MPM, called convected particle
domain interpolation (CPDI MPM), published by Sadeghirad et al. [7, 8], with explicit time integration. Analyses
are performed in two dimensions for a clamped-free column submitted to 4 different load cases, considering a
linear elastic, isotropic and homogeneous material, plane stress and finite strains.

2 Method

2.1 Governing equations

Derived from the continuum mechanics, equation
∫

Ω

v · ρdv
dt
dV +

∫

Ω

Lx : σdV =

∫

Ω

ρb · vdV +

∫

Γt

v · tndA (1)

represents, at the time t, the balance of mechanical energy of a continuous body with domain Ω(t), surface traction
boundary Γt(t), velocity field v(x, t), density field ρ(x, t), spatial velocity gradient field Lx = ∂v(x, t)/∂x,
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Cauchy stress field σ(x, t), body force per unit mass field b(x, t) and surface traction field tn(x, t). This equation
is the basis for MPM discretization and is used to update particle state using properly time integration.

In addition, considering an homogeneus, linear elastic and isotropic material, the constitutive relation Ṡ =
λtr(Ė)I+2µĖ is applied to update stresses, being Ṡ = dS/dt the time rate of second Piola-Kirchhoff stress tensor
and Ė = dE/dt = FTDF the time rate of Green-Lagrange finite strain tensor, where D is the simetric part of
Lx. Values λ and µ are the Lamé constants of the material. The relation between the time rates of Cauchy and
second Piola-Kirchhoff stress tensors is given by eq.

σ̇ = −σtr(D) + Lxσ + σLT
x + FṠFT / det(F), (2)

being F the deformation gradient tensor. In this study, analyses are performed using plane stress state definitions,
where the time rate of out-of-plane strain and the out-of-plane term of strain rate tensor are calculated, respectively,
as ĖzZ = [−λ/ (λ+ 2µ)]

(
ĖxX + ĖyY

)
and Dzz = ĖzZ/ (1 + 2EzZ).

2.2 MPM discretization

MPM discretizes a domain Ω into a set of subdomains Ωp (Lagrangian mesh), which move through an Eu-
lerian grid, as shown in Fig. 1 (a). Each subdomain carries all time history information - mass, velocity, energy,
strain - along the time of analysis. Eulerian grid is fixed and allows, at a time step tn, the calculation of spatial gra-
dients/divergences and the solution of mechanical energy balance. At the beginning of each time step, information
is mapped from the subdomains to Eulerian grid nodes, where nodal velocities are updated. Then, these values are
mapped back to the Lagrangian mesh to update subdomains state and the Eulerian grid is reset.

Figure 1. (a) MPM discretization, (b) CPDI MPM mapping scheme.

According to MPM, the spatial interpolation of velocities through the Eulerian grid is written as

v(xn) =
∑

i

Ni(x
n)vni , (3)

where i is the index of the Eulerian grid node, vni are the velocities of these nodes and Ni(xn) are the values of
nodal interpolation functions evaluated at point with position xn. Thus, considering eq. (3) and that Ωn =

∑
p Ωnp ,

eq. (1) is rewritten, for the i-th node, as

ṗni = fnbi + fnti − fnσi
, (4)

also known as the momentum equation of MPM. In eq. (4), ṗni =
∑
p

∫
Ωn

p
ρ(x)Ni(x)v̇(x)dV is the time rate of

momentum at i-th node, where ρ(x, t) is the mass density field, fnbi =
∑
p

∫
Ωn

p
Ni(x)ρ(x)b(x)dV is the external

body force at i-th node, fnti =
∑
p

∫
Γn
tp

Ni(x)tn(x)dA is the external surface traction force at i-th node and

fnσi
=
∑
p

∫
Ωn

p
σ(x)

∂Ni(x)

∂x
dV is the internal force at i-th node.

2.3 CPDI MPM

As represented in Fig. 1 (b), CPDI MPM, published by Sadeghirad et al. [7, 8], is a variant of MPM in which
the masses, velocities, stresses and strains are stored at the center of mass of subdomains and positions are tracked
using its vertices. The main difference between CPDI and original MPM [1] is the monitoring of subdomains
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shape, facilitating the application of boundary conditions and removing cell-crossing error. The interpolation
functions used in CPDI MPM, given by

NCPDI
i (x) =

∑

v

Ni(xv)Lv(x), (5)

are composed by two portions: the external one Ni(xv), mapping from the vertices to the Eulerian nodes, and the
internal one Lv(x), mapping from the internal part of the subdomain to its vertices. Both functions are bilinear for
two-dimensional analysis, being

Ni(x) = Ri(x)Si(y), (6)

with

Ri(x) =





1 + ri(x) : −1 ≤ ri(x) < 0

1− ri(x) : 0 ≤ ri(x) ≤ 1

0 : ri(x) < −1, ri(x) > 1

and Si(y) =





1 + si(y) : −1 ≤ si(y) < 0

1− si(y) : 0 ≤ si(y) ≤ 1

0 : si(y) < −1, si(y) > 1

, (7)

where ri(x) = (x− xi) /lcx and si(y) = (y − yi) /lcy are relative coordinates between a point and the i-th node
and lcx and lcy are the dimensions of Eulerian grid cells along x and y directions, respectively. Internal functions,
in turn, are given, for a 4-node quadrilateral subdomain, by eq. (8) FEM bilinear shape functions

L1(ξ, η) =
(1− ξ) (1− η)

4
L2(ξ, η) =

(1 + ξ) (1− η)

4
L3(ξ, η) =

(1 + ξ) (1 + η)

4
L4(ξ, η) =

(1− ξ) (1 + η)

4
,

(8)
being (ξ, η) internal local coordinates varying from −1 to 1. Considering the CPDI assumptions and adopting a
lumped mass matrix formulation, nodal momentum time rate is rewritten as

ṗi = mn
i v̇

n
i =

(∑

p

φCPDI,n
ip mp

)
v̇ni , (9)

where mp is the Ωp subdomain total mass, v̇ni = ani is the i-th node acceleration at time tn and

φCPDI,n
ip =

1

V np

∫

Ωn
p

NCPDI
i (x)dV =

[
1

48 (xn1y
n
2 − xn1yn4 − xn2yn1 + xn2y

n
3 − xn3yn2 + xn3y

n
4 + xn4y

n
1 − xn4yn3 )

]

[(1− κnA − κnB)Ni(x
n
1 ) + (1− κnA + κnB)Ni(x

n
2 ) + (1 + κnA + κnB)Ni(x

n
3 ) + (1 + κnA − κnB)Ni(x

n
4 )]
(10)

is the interpolation weight of a 4-node quadrilateral subdomain Ωp to node i, with κnA = (xn4 − xn1 ) (yn2 − yn3 ) −
(xn2 − xn3 ) (yn4 − yn1 ) and κnB = (xn3 − xn4 ) (yn1 − yn2 ) − (xn1 − xn2 ) (yn3 − yn4 ) being coefficients which are func-
tions of Ωnp vertices coordinates and with V np the volume of Ωnp . The same φCPDI,n

ip interpolation weights are used
to map external body forces to nodes using eq.

fnbi =
∑

p

φCPDI,n
ip mpb

n
p , (11)

where bnp is the subdomain Ωnp average body force per unit mass. In case of external surface forces exclusively
applied to Ωnp vertices, which is the case of this paper, the eq.

fnti =
∑

p

∑

v

Ni(x
n
v )fnv (12)

straight mapping can be done, being fnv the force applied to local vertex v of subdomain Ωnp . For the calculation
of nodal internal forces

fnσi
=
∑

p

σnp∇xφCPDI,n
ip V np , (13)

where σnp is the average Cauchy stress tensor of subdomain Ωnp , it is necessary to determine the spatial gradients
of interpolation weights by means of eq.
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∇xφCPDI,n
ip =

[
1

4 (xn1y
n
2 − xn1yn4 − xn2yn1 + xn2y

n
3 − xn3yn2 + xn3y

n
4 + xn4y

n
1 − xn4yn3 )

]


Ni(xn1 )





yn2 − yn4
xn4 − xn2



+Ni(x

n
2 )





yn3 − yn1
xn1 − xn3



+Ni(x

n
3 )





yn4 − yn2
xn2 − xn4



+Ni(x

n
4 )





yn1 − yn3
xn3 − xn1








(14)

2.4 Algorithm

In order to analyze the stability of elastic columns using a nonlinear two-dimensional approach, a Python 3
[6] computational script was developed, using CPDI MPM [7, 8] assumptions with forward Euler explicit time
integration, plane stress theory and update-stress-last (USL) scheme. A simplified flowchart of implemented cal-
culations is shown in Fig. 2. The process starts with the discretization of entire domain Ω into np Ωp subdomains
and, consequently, subdomains initial properties are settled: vertices positions, masses, volumes, velocities, defor-
mation gradients and Cauchy stresses. In parallel, the nodal coordinates xi of the Eulerian background grid are
defined. Then, initial time t1 = 0 and initial time step n = 1 are assigned and a computational loop is started.

Firstly, the time step size ∆tn is calculated and, next, masses, momenta, internal and external forces are
mapped from subdomains to Eulerian nodes. Thus, nodal momenta are updated using MPM momentum equation
and the respective updated nodal velocities are calculated and Dirichlet boundary conditions are applied to nodes
coinciding with structure supports. Hence, increments in nodal velocities are mapped back to update subdomain
velocities and nodal updated velocities are used to calculate subdomain spatial velocity gradients Ln

xp
. Next, the

calculation of strain rate tensors Dn
p is done, in order to determine the time rate of Green-Lagrange finite strain

tensors Ėnp . Also, a correction of out-of-plane components (ĖzZ)np and (Dzz)
n
p = (Lxzz )np is done to include plane

stress theory. After that, the time rate of second Piola-Kirchhoff stress tensors are calculated. These stress rates are
converted to the time rates of Cauchy stress tensors, using velocity and deformation gradients. So, Cauchy stresses
and deformation gradients are updated with the application of a simple forward Euler time integration scheme.
Then, new deformed volumes are calculated using the deformation gradients determinants and finite strain tensors
are updated. After that, time step is increased by 1 and the new time value is compared to the desired time of
analysis tan. If tn < tan, a new loop is started, otherwise process is ended.

Start Ω→ Ω1, . . . ,Ωp, . . . ,Ωnp

x1
v,p,mp, V

1
p ,v

1
p,F

1
p,σ

1
p

x1, . . . ,xi, . . . ,xnn

t1 = 0n = 1

tn < tan?

∆tn = tn+1 − tn

mn
i =

∑
p φ

CPDI,n
ip mp

pni =
∑
p φ

CPDI,n
ip mpv

n
p

fnσi
=
∑
p σ

n
p∇φCPDI,n

ip V np

fnbi =
∑
p φ

CPDI,n
ip mpb

n
p

fnti =
∑
p

∑
vNi(x

n
v )fnv

fni = −fnσi
+ fnbi + fnti pn+1

i = pni + fni ∆tn vn+1
i = pn+1

i /mn
i

vn+1
i = vi : xi ∈ Γuvn+1

p = vnp +
∑
i φ

CPDI,n
ip

(
vn+1
i − vni

)
xn+1
v = xnv + ∆tn

∑
iNi(x

n
v )vn+1

i

Ln
xp

=
∑
i v

n+1
i

[
∇φCPDI,n

ip

]T
Dn
p =

1

2

[
Ln
xp

+ (Ln
xp

)T
]

Ėnp = (Fnp )TDn
pF

n
p(ĖzZ)np =

−λ
λ+ 2µ

(
ĖxX + ĖyY

)n
p

(Dzz)
n
p = (ĖzZ)np/

[
1 + 2(EzZ)np

]
Ṡnp = λtr(Dn

p )I + µĖnp

σ̇np = −σnp tr(Dn
p ) + Ln

xp
σnp+

σnp (Ln
xp

)T +
Fnp Ṡ

n
p (Fnp )T

det(Fnp )

σn+1
p = σnP + ∆tnσ̇np

Fn+1
p =

(
I + ∆tnLn

xp

)
Fnp

V n+1
p = det(Fn+1

p )V 1
p

En+1
p = Enp + ∆tnĖnp

n = n+ 1
End

yes

no

1Figure 2. Flowchart of implemented CPDI MPM algorithm.
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2.5 Analyzed columns and analysis parameters

According to Fig. 3, a clamped-free column is analyzed under 4 different compressive load cases: centered
load, centered load with a minimal transverse load (1000 times smaller than the axial load) and eccentric loads
with eccentricities equals to 0.25ly and 0.50ly . Column geometry and material properties are also summarized in
Fig. 3. The column is subdivided in np = 60 subdomains with initial dimensions 10× 10× 1 cm and the analysis
domain is discretized in an Eulerian background grid with 35 × 40 cells with dimensions 10 × 10 cm, as shown
in Fig. 4 (a). Taking into account Dirichlet boundary conditions, nodes that are coincident to support vertices of
column are restrained. The load function P (t) = PE [1 + sin(πt/tan − π/2)] , graphically represented in Fig. 4
(b) and valid for the total time of analysis tan = 40 s, is based on the analytical Euler’s buckling critical load of
the column PE = πEI/(2lx)2 = 0.7494 kN. The purpose of this sinusoidal function is to increase axial load as
smooth as possible, obtaining a static analysis, without significant vibration.

Figure 3. Geometry, material properties and load conditions.

200 150 150 200x (cm)

50
1010

300

y (
cm

)

(a)

0 20 40
t (s)

0
1
2

P/
P E

(b)

Figure 4. (a) Eulerian grid nodes (grey dots) and Lagrangian mesh (blue dots conected by black lines), (b) load
function.

3 Results and Discussions

Figures 5 (a) and (b) present, respectively, the axial and transverse load-displacement behavior, detected at
the column free end midpoint, in the analyses of the four load cases. The processing of “centered load” and
βP = 10−3 cases are interrupted before tan is totally completed, in order to avoid the occurrence of strong
vibrations in the results, something that is outside the scope of this work. In Fig. 6, evolution of total potential
energy Π(t) = U(t) +K(t) (sum of kinetic and internal energies) and total work done by external loads W(t) are
plotted along time. Red dots in the charts represent the beginning of instability, when the energetic equilibrium
starts an abrupt variation. This point is chosen, in this study, as the maximum time tn before ∆ (Πn/∆tn) =(
Πn+1 −Πn

)
/
(
tn+1 − tn

)
exceeds 1.00 kN.cm/s. Blue dots, in turn, represent the end of the analysis. Finally,

deformed shapes at times symbolized by red and blue dots are plotted in Fig. 7.
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Centered load P = 10 3 e/ly = 0.25 e/ly = 0.50

Figure 5. Displacement-load behavior measured at the free end of analyzed columns in x (a) and y (b) directions.
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0 10 20 30 40
t(s)

(d) e/ly = 0.50

Figure 6. Total potential energy and total work done by external loads.

In general, according to results, the performed stability analyses using CPDI MPM presented a good accuracy
when compared to Euler’s critical load, with the benefit of considering large deformations and tracking post-critical
behavior. Even the column under centered axial load presented instability when P/PE ≈ 1.65 (Figs. 6 (a) and 7
(a)), as a consequence of a numerical eccentricity caused by large strains in a slender structure. Additionally, results
of load case βP = 10−3 - a minimal perturbation - show that column has a loss of stability when P/PE ≈ 1.12,
as can be seen in Figs. 6 (b) and 7 (c). This value is above 1, indicating that the consideration of nonlinear finite
strains and two dimensions increases unidimensional linear critical loads by approximately 12%. As expected,
for eccentric load cases, loss of stability occurs under lower axial loads P/PE ≈ 0.87 when e/ly = 0.25 - Figs.
6 (c) and 7 (e) - and P/PE ≈ 0.75 when e/ly = 0.50 - Figs. 6 (d) and 7 (h). Furthermore, the displacement-
load behavior of both cases didactically show that the column leaves an unstable equilibrium state and reaches the
same stable post-critical equilibrium, regardless of the eccentricity magnitude. Moreover, Fig. 6 energy plots not
only confirm the implemented CPDI MPM algorithm capability of conserving energy in the absence of dissipative
forces, but also clearly indicate the beginning of columns instability. Also, it is verified in Fig. 5 that the load
application function P (t) is able to represent a static loading in dynamic analyses, avoiding significant vibrations,
even without any consideration of damping forces.

4 Conclusions

In this study, a two-dimensional analysis of a clamped-free column stability is performed using a MPM CPDI
algorithm, considering plane stress theory and finite strains. Governing equations, derived from the continuum
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Figure 7. Deformed shapes shortly before buckling (red circle) and in the end of analysis (blue circle).

mechanics, are present, as well as CPDI MPM equations and the computational algorithm flowchart. This algo-
rithm is used to process 4 different load cases and the results produced are displacement-load and time-energy
curves, with which the accuracy and ability of implemented algorithm to deal with large displacements and strains
are confirmed. In addition, analyses are capable to precisely predict buckling loads and to track all post-critical
behavior, keeping numerical convergence and energy conservation.
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