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Abstract. In the Boundary Element Method (BEM), when the element which is being integrated contains the
source point, singularities arise in the integrals that govern the problem. Although several classical methods
have already been proposed and successfully used, their numerical implementation is laborious and often requires
particular codes for each type integral kernel. Recently, a method that allows the solution of integrals with different
singularity orders in a single numerical procedure has been proposed. It is based on the polynomial expansion
of the radial distance between the source and field points and it is called here as Radial Polynomial Expansion
Method (RPEM). The RPEM has its efficiency studied for application to the Dual-BEM. Elements with quadratic
interpolation functions are analyzed. The efficiency is verified in terms of the element distortion and the number
of terms needed in the expansion. For this, the method is implemented in a computational code in Fortran 95 and
the results are compared with other formulations, such as the singularity subtraction method. Once the reliability
and applicability of the method have been proven, it is intended to apply the solutions found in a Dual-BEM code,
for the analysis of fatigue crack propagation.
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1 Introduction

The Boundary Element Method (BEM) has been successfully applied to crack propagation problems, having
as an advantage, in relation to the standard Finite Element Method the capacity of the mesh to follow the crack
growth, without the need to re-mesh the domain at each crack increment.

For the analysis of general cracks, it is necessary to apply the Dual Boundary Element Method (DBEM).
The theoretical bases of DBEM were proposed by Hong and Chen [1] and the method was later systematized
for application to fracture mechanics problems by Portela et al. [2, 3, 4]. The method consists of applying the
displacement boundary integral equation on one of the crack faces, while the traction boundary integral equation
is applied on the opposite face, which is presented in Fig. 1. The displacement equation is applied to the rest of the
boundary, as proposed by Portela et al. [3].

Figure 1. Strategy for boundary discretization in the application of the Dual Boundary Element Method

The boundary integral equations (BIE) that are applied in DBEM are:
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• BIE for displacement at boundary points (ξ ∈ Γ):

1

2
uj (ξ) +−

∫
Γ

t∗ij (ξ,x)uj (x) dΓ =

∫
Γ

u∗
ij (ξ,x) tj (x) dΓ; (1)

• BIE for traction at boundary points (ξ ∈ Γ):

ni (ξ)−
∫
Γ

u∗
ijk (ξ,x) tk(x)dΓ− 1

2
tj (ξ) = ni (ξ)=

∫
Γ

t∗ijk (ξ,x)uk(x)dΓ. (2)

Where, Γ denotes the boundary, ξ is the source point, x refers to the analysed field point, ui refers to the
displacement components, and ti to the traction components, i, j and k refer to the Cartesian components, which
assume values 1 and 2 for the two-dimensional case and 1, 2 and 3 for the three-dimensional case, ni denotes the
external unitary normal vector to Γ, the symbols −

∫
and =

∫
indicate that the integrals exist only, respectively, in the

senses of the Cauchy principal value and the Hadamard principal value and u∗
ij (ξ,x), t

∗
ij (ξ,x), u

∗
ijk (ξ,x) and

t∗ijk (ξ,x) represent Kelvin fundamental solution terms, which can be found in many BEM books, e.g., Brebbia
et al. [5], Brebbia [6], Aliabadi [7] and Katsikadelis [8].

These integrals presented in eq. (1) and eq. (2) are regular, when the source point does not belong to the
element being integrated and, therefore, can be solved by the Gauss-Legendre quadrature. However, when the
source point belongs to the element being integrated, the distance r between the source point and the field point
tends to zero and singularities arise. The integral containing the term u∗

ij is weakly singular, with singularity of
order ln(r). The integrals with the terms t∗ij and u∗

ijk are strongly singular, with singularity order r−1 and the
integral that contains the fundamental solution term t∗ijk classifies as hyper-singular, due to the term r−2. Thus,
it is necessary to analyse them by methods that eliminate these singularities. Although there are several classical
methods proposed and successfully applied to solve these integrals, the numerical implementation of these methods
is laborious and often requires specific codes to handle each type of integral kernel. The method proposed by Gao
[9], and presented in the section 2, allows evaluating all types of singular integrals kernels in a single numerical
procedure, in a more direct way.Thus, it emerges as a powerful method to be used for new DBEM codes. However,
no efforts in this direction is of our knowledge, so that a previous study of its efficiency and applicability to integrals
of eq. (1) and eq. (2) is recommended. This is the main objective of the present paper.

As the intention is to apply the results obtained with DBEM in the analysis of fatigue crack propagation,
based on the concepts of Linear Elastic Fracture Mechanics (LEFM) and using straight elements, it is necessary
to correctly solve the integrals that appear in the analysis. Therefore, as a way of testing the method proposed by
Gao [9], a computational code is implemented in Fortran 95 language, which solves the aforementioned singular
integrals based on this formulation. The test variables and the methodology used are presented in section 3, while
the numerical results obtained are found in section 4. Finally, the conclusion is presented in section 5.

2 Radial Polynomial Expansion Method

The method proposed by Gao [9] will be identified in this paper as the Radial Polynomial Expansion Method
(RPEM) and allows the unified evaluation of any type of two-dimensional singular boundary integral. For this,
RPEM proposes to express the non-singular parts of the integrand as polynomials of the distance r and then
analytically remove those singularities. The formulation starts from two general singular integrals, which are:

Ii(ξ) =

∫
Γ

fi(ξ,x)dΓ(x) =

∫
Γ

f̄i(ξ,x)

rβ(ξ,x)
dΓ(x) (3)

and

Ji(ξ) =

∫
Γ

fi(ξ,x)dΓ(x) =

∫
Γ

f̄i(ξ,x) ln[r(ξ,x)]

rβ(ξ,x)
dΓ(x), (4)

where f̄i(ξ,x) is bounded at any point in the domain or boundary, r(ξ,x) is the distance between the source point
ξ and the field point x and β indicates the level of singularity of the equations, so that:
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β = 0, Ii(ξ) regular e Ji(ξ) weakly singular,
0 < β < 1, Ii(ξ) weakly singular e Ji(ξ) strongly singular,
β = 1, Ii(ξ) strongly singular e Ji(ξ) hyper-singular,
1 < β ≤ 2, Ii(ξ) hyper-singular e Ji(ξ) super-singular,
β > 2, Ii(ξ) e Ji(ξ) super-singular.

(5)

In order to remove the singularities, it is necessary to, initially, express the boundary differential dΓ as a
function of the radial distance differential dr, so that, after some mathematical manipulations:

dΓ =
dr

r̂ · l̂
, (6)

where r̂ is the unit vector of the distance r and l̂ is the unit vector tangential to dΓ, according to Fig. 2.

Figure 2. Variables in a singular element

Equation (6) is then substituted into eq. (3) and eq. (4), so that, for element e:

Iei (ξ) =

∫ r(ξ,xe)

0

f̄i(ξ,x)

r̂ · l̂rβ(ξ,x)
dr(ξ,x) (7)

and

Je
i (ξ) =

∫ r(ξ,xe)

0

f̄i(ξ,x) ln[r(ξ,x)]

r̂ · l̂rβ(ξ,x)
dr(ξ,x), (8)

where the upper limit of the integrals, r(ξ,xe), refers to the distance between the source point ξ and the final
point xe. This distance is represented in Fig. 2. For the solution of singular integrals, the non-singular part of the
integrand is expanded into polynomials of r:

f̄i(ξ,x)

r̂ · l̂
=

N∑
n=0

Cn
i r

n(ξ,x), (9)

where N is the order of the polynomials and Cn
i are the coefficients. These coefficients are obtained by placing

the coordinate x at N + 1 points between the source (ξ) and final (xe) points, equally spaced by a distance ϵ. For
the first point, n = 0, and therefore r̂ · l̂ = 1, it is obtained that:

C0
i = f̄i(ξ, ξ). (10)

The other coefficients are obtained by:
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
1 r1(ξ,x1) ... rN−1(ξ,x1)

1 r1(ξ,x2) ... rN−1(ξ,x2)
...

...
...

1 r1(ξ,xN ) ... rN−1(ξ,xN )





C1
i

C2
i

...

CN
i


=



(f̄i(ξ,x
1)/(r̂ · l̂)− C0

i )/r(ξ,x
1)

(f̄i(ξ,x
2)/(r̂ · l̂)− C0

i )/r(ξ,x
2)

...

(f̄i(ξ,x
N )/(r̂ · l̂)− C0

i )/r(ξ,x
N )


, (11)

where xn represents the coordinate of the point (n+ 1).
Substituting eq. (9) in eq. (7) and performing the necessary mathematical manipulations, the method then

returns the solution of the integral Iei , so that:

Iei (ξ) =

N∑
n=0

Cn
i F

n, (12)

where:

Fn =


rn−β+1(ξ,xe)

n−β+1 for n− β + 1 ̸= 0

ln[r(ξ,xe)] for n− β + 1 = 0

. (13)

The integral Je
i of eq. (8) can be solved similarly, resulting in:

Je
i (ξ) =

N∑
n=0

Cn
i H

n, (14)

where:

Hn =


−{a ln[r(ξ,xe)]+1}

a2ra(ξ,xe) for a = β − n− 1 ̸= 0

1
2{ln[r(ξ,x

e)]}2 for a = β − n− 1 = 0

. (15)

According to Gao [9], eq. (12) and eq. (14) can be used in the evaluation of singular integrals of arbitrary
order. If the singular integral exists, the equations return the result in the Cauchy Principal Value. If the integral
does not exist, the finite part of the result is returned.

3 Formulation

In order to evaluate the reliability of the RPEM and the applicability of the method in DBEM, it is proposed
the analysis of an element with quadratic interpolation functions, initially straight, and discontinuous, with λ1 =
λ2 = 2/3, i.e., the extreme nodes are located at points η = −2/3 and η = +2/3, instead of η = −1 and η = +1.
To evaluate the behaviour of the method in the analysis of curved elements, the source point 2 (ξ2) of the straight
element is slightly moved in 5 steps, until reaching the maximum proposed distortion, in which the coordinates of
ξ2 are (1.5, 2.5). The straight element and the element with maximum distortion studied are shown in Fig. 3. It is
considered a plane strain state, with an elasticity modulus of 26710.3 MPa and Poisson’s ratio equal to 0.245.

To carry out the tests, the RPEM formulation is implemented in a computational program coded in Fortran
95 language. Then, the integrals kernels composed by the fundamental solution terms u∗

ij , t∗ij and t∗ijk ate tested
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Figure 3. Elements used in the analysis, being a) straight, b) with maximum distortion

for different quantities of expansion polynomials, ranging from 3 to 15 polynomials, yielding 7 results. The
integrals containing the term u∗

ijk are not evaluated here, since the crack faces are assumed to be traction-free.
For comparative purposes, the results of these same integrals are calculated by the Singularity Subtraction Method
(SSM), a method that is widely disseminated for solving singular integrals. In the SSM application, based on
Aliabadi [7], Kzam [10] and Aliabadi and Hall [11], three different results are generated, associated to truncation
at different orders of the interpolation functions, Nα(η), series expansion, i.e., using one, two or three terms from

Nα(η) ≈ Nα(η0) +
∂Nα

∂η
(η0)[η − η0] +

1

2

∂2Nα

∂η2
(η0)[η − η0]

2, (16)

keeping the other terms present in the integrand truncated at the zero-order term.
Integrals with weakly singular kernels (u∗

ij) are analysed for the straight element and for all five curved
elements. On the other hand, strongly singular (t∗ij) and hyper-singular (t∗ijk) integrals kernels are analysed for
the straight element only, since crack propagation analyses by DBEM are usually performed by adding straight
segments (elements). The seven results obtained by the RPEM and the three results obtained by the SSM are then
compared with numerical and analytical results. This comparison is made by calculating the percentage error of
the results obtained by RPEM and SSM, based on the values obtained numerically by logarithmic quadrature for
u∗
ij and analytically for straight elements (see [12]) for t∗ij and t∗ijk. The results of such comparisons are presented

in the section 4 below.

4 Numerical Results

Tables 1 to 6 summarize the errors obtained for each analysis, considering the reference results (logarithmic
quadrature with 12 integration points for u∗

ij and analytical results for t∗ij and t∗ijk). Noting that u∗
ij and t∗ij

correspond to four components and t∗ijk corresponds to six components, only the maximum error, in each case,
is reported. The presentation of the results related to SSM is divided into 3 columns, which differ due to the
expansion adopted for the interpolation function. The presentation of the results related to the RPEM are divided
into 7 columns, related to the number of expansion polynomials (N) used in the analysis.

First, the integral u∗
ij is analysed. In Table 1 the absolute maximum errors are presented, in percentage, when

comparing the results obtained with the SSM and the results expected by the logarithmic quadrature. In Table 2,
the comparison is performed between RPEM and logarithmic quadrature.

The analysis of the integral t∗ij is performed for the straight element. Thus, in Table 3, it is presented the
absolute maximum errors, in percentage, comparing the results obtained with the SSM and the expected analytical
results. The comparison is then repeated for the results obtained with the RPEM and displayed in Table 4.

Also analysing the straight element for the integral t∗ijk, it is shown in Table 5 the absolute maximum errors,
in percentage, between the results obtained by SSM and the analytical ones, while in Table 6 the results obtained
by RPEM are compared.
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Table 1. Absolute maximum error (%) when comparing the results for the integral u∗
ij obtained with SSM and

logarithmic quadrature (with 12 integration points)

Element Nα truncated at 1st term Nα truncated at 2nd term Nα fully expanded

Straight 3.534 0.471 0.463
ξ2 (1.9, 2.1) 3.881 0.554 0.520
ξ2 (1.8, 2.2) 4.417 0.693 0.630
ξ2 (1.7, 2.3) 5.215 0.981 0.809
ξ2 (1.6, 2.4) 6.387 1.934 1.085
ξ2 (1.5, 2.5) 13.342 13.342 1.503

Table 2. Absolute maximum error (%) when comparing the results for the integral u∗
ij obtained with RPEM and

logarithmic quadrature (with 12 integration points)

Element N = 3 N = 5 N = 7 N = 9 N = 11 N = 13 N = 15

Straight 0 0 0 0 2.503E-06 8.599E-05 3.152E-03
ξ2 (1.9, 2.1) 0.099 7.652E-04 1.805E-05 0 3.092E-06 5.053E-05 3.021E-03
ξ2 (1.8, 2.2) 0.235 0.021 1.561E-03 8.876E-05 8.069E-06 2.824E-05 2.243E-03
ξ2 (1.7, 2.3) 0.491 0.194 0.027 3.411E-03 4.165E-04 1.203E-04 3.772E-03
ξ2 (1.6, 2.4) 2.487 1.055 0.243 0.052 0.011 2.504E-03 0.010
ξ2 (1.5, 2.5) 14.744 4.319 1.488 0.493 0.163 0.054 7.480E-03

Table 3. Absolute maximum error (%) when comparing the results for the integral t∗ij obtained with SSM and
analytically by Portela [12]

Element Nα truncated at 1st term Nα truncated at 2nd term Nα fully expanded

Straight 0 0 0

Table 4. Absolute maximum error (%) when comparing the results for the integral t∗ij obtained with RPEM and
analytically by Portela [12]

Element N = 3 N = 5 N = 7 N = 9 N = 11 N = 13 N = 15

Straight 0 0 0 0 0 1.204E-05 1.191E-04

Table 5. Absolute maximum error (%) when comparing the results for the integral t∗ijk obtained with SSM and
analytically by Portela [12]

Element Nα truncated at 1st term Nα truncated at 2nd term Nα fully expanded

Straight 870.079 0 0

Table 6. Absolute maximum error (%) when comparing the results for the integral t∗ijk obtained with RPEM and
analytically by Portela [12]

Element N = 3 N = 5 N = 7 N = 9 N = 11 N = 13 N = 15

Straight 0 0 0 0 1.347E-06 2.829E-05 3.124E-03

It is possible to see from Table 1 and Table 2 that, for the integral involving u∗
ij , the Radial Polynomial

Expansion Method, proposed by Gao [9], proved to be more efficient, if only zero-order terms are considerer in
the SSM. It is possible to obtain, with the RPEM, the exact value that is expected by the logarithmic quadrature,
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using the minimum number of terms in the expansion, for a straight element. For curved elements, the RPEM
starts to present larger errors for N = 3, but these errors drop considerably as the number of polynomial terms
in the expansion is increased. In SSM, however, even when completely expanding the interpolation function, the
values obtained are not as close to those of logarithmic quadrature as those of RPEM, always presenting errors
greater than this last method. Thus, the SSM proves to be more laborious than the RPEM, being necessary to carry
out the expansion of other quantities involved in the integral kernel. In the analysis of the integral that contains
t∗ij , both the RPEM and the SSM were able to provide the exact result that was expected analytically, in the most
basic format of their formulations, the SSM being with the interpolation function truncated in the first term and the
method of Gao [9] with 3 polynomial terms of expansion. As for the integral that contains t∗ijk, the two methods
also met the requirement, finding the exact expected value, but RPEM achieved this in its basic formulation, while
SSM was more laborious, and it was necessary to expand the interpolation function at least up to the second term.

5 Conclusions

The method proposed by Gao [9], called in this paper as Radial Polynomial Expansion Method, presents
satisfactory results in the analysis of straight elements. This is because it is possible to obtain the exact result
expected by other numerical and analytical formulations, for all the studied integrals, with the minimum number
of polynomial terms proposed, i. e., N = 3. Moreover, solving weakly singular integrals (which kernel contains
u∗
ij terms) over distorted elements, while the singularity subtraction technique requires higher order terms of each

kernel component (which is a laborious task) for reliable results, the RPEM only requires the increase of the
number of polynomial terms to improve the results.

As the proposed objective is to apply the results of these integrals in a code for fatigue crack propagation
problems, using straight elements, the RPEM presents reliable results and is applicable in the solution of LEFM
problems through DBEM.
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