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Abstract. This contribution proposes a strategy for performing seepage analysis where uncertainty associated
with permeability is characterized by means of fuzzy fields. In order to decrease numerical costs associated with
uncertainty propagation, full system analysis is replaced by a reduced order model. This reduced order model
projects the equilibrium equations to a small-dimensional space, which is constructed using a single analysis of
the system plus a sensitivity analysis. The associated basis is enriched to ensure the quality of the approximate
response. A simple numerical example shows that with the presented strategy, it is possible to accurately estimate
the fuzzy seepage flow with reduced numerical efforts.
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1 Introduction

Seepage analysis is of utmost importance in several practical engineering problems such as dam design. In
this context, seepage can be quantified by resorting to, e.g., finite elements. However, the parameters that govern
the seepage phenomenon, such as permeability, can be seldom quantified precisely (see Baroni et al. [1]). Several
difficulties are encountered in practice when characterizing permeability, such as imprecision and scarcity in field
measurements, anisotropy in vertical and horizontal directions, and spatial variation. Under such a scenario, fuzzy
fields appear as a viable tool for treating problems that exhibit imprecision with a spatial component. Nonetheless,
dealing with fuzzy fields imposes a major challenge, as it becomes necessary to propagate uncertainty considering
spatial dependencies, which can be quite challenging when large-scale numerical models are involved. This diffi-
culty stems directly from (1) the by-definition orthogonality between any two intervals in a set of intervals; (2) the
computational burden associated with the multiple calls to the model.

This contribution proposes an approach for seepage analysis where uncertainty associated with permeability
is characterized by means of fuzzy fields. In this context, fuzzy fields are defined as a natural extension of the
Inverse Distance Weighting framework that is commonly applied in an interval field context (see Faes and Moens
[2]). Concerning the propagation of the fuzzy field, the traditional alpha-level optimization strategy is adopted for
calculating the membership function associated with seepage flow in a discrete manner (see Moeller et al. [3]).
Within this optimization process and to decrease numerical costs, full finite element analyses are replaced by a
reduced order model that projects the system’s equations to a small-dimensional space. The basis associated with
the reduced order model is constructed by means of a single analysis of the system plus a sensitivity analysis. This
reduced basis is enriched adaptively as the alpha-level optimization strategy progresses to protect the quality of the
approximations provided by the reduced order model. A numerical example illustrates that the proposed strategy
allows for characterizing the fuzzy seepage flow with improved numerical efficiency.
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2 Formulation of the Problem

2.1 Finite element formulation

The partial differential equation that governs the 2D steady-state confined seepage problem under uncertainty
is:
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where θ represents a vector that collects the uncertain parameters; kH and kV correspond to the horizontal
and vertical permeabilities, respectively; and h is the hydraulic head.

Equation 1 is solved by means of the finite element (FE) method,

K (θ)H (θ) = Q (θ) (2)

where K (θ) is the matrix associated with the soil permeabilities; Q (θ) is the vector representing nodal flow;
and H (θ) is the vector that describes the system’s response, that is, hydraulic head. As noted from eq. (2), the
uncertainty affecting the system’s matrix K (θ) and the flow Q (θ) propagates to the hydraulic head H (θ).

2.2 Fuzzy Fields

A possible way of quantifying the uncertainty associated with the system’s response corresponds to applying
techniques of fuzzy analysis (see Beer et al. [4]). Thus, each uncertain parameter θi, i = 1, . . . , nθ, where nθ
indicates the number of uncertain parameters; can be characterized as a fuzzy variable θ̃i. In this context, a fuzzy
variable can be interpreted as a collection of intervals for different membership levels, where these intervals are
indexed by a membership function µθ̃i

(θi) ∈ [0, 1]. Consequently, as the input parameters are characterized as
fuzzy variables, the response will depend on the membership level under analysis, which implies that the system’s
response is a fuzzy variable as well.

One approach to determine the membership function of the response is to use the previous interpretation
of a fuzzy variable. For this purpose, the membership functions µθ̃i

(θi) associated to each fuzzy variable θ̃i are
analyzed for discrete membership values αj , with j = 1, . . . , nc, where nc indicates the number of discrete levels
considered. This implies that for each of these membership levels αj , there will be an interval associated with each
variable θi:

θi,αj
=

{
θi ∈ Θi : µθ̃i

(θi) ≥ αj

}
, i = 1, . . . , nθ, αj ∈ (0, 1] (3)

where θi,αj
represents the possible set of values that θi can assume for an αj−cut of the membership function.

Note that this cut corresponds to an interval whose lower and upper limits are θLi,αj
and θRi,αj

, respectively.
For a given membership level αj , the response of interest r will be contained in an interval rαj

with lower
rLαj

and upper rRαj
bounds. That is,

rLαj
= min

θ
(r(θ)), θi ∈ θi,αj

, i = 1, . . . , nθ (4)

rRαj
= max

θ
(r(θ)), θi ∈ θi,αj

, i = 1, . . . , nθ (5)

In this contribution, the response of interest r corresponds to the seepage total flow, where the lower rLαj
and

upper rRαj
bounds, from eq. (4) and eq. (5), respectively, are determined by optimization.
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The characterization of input parameters by means of fuzzy variables, such as those described recently, as-
sumes that parameters under study are only affected by uncertainty. Nevertheless, for some variables, such as soil
properties, uncertainty is also dependent on spatial coordinates. Therefore, in the presence of spatial dependencies,
the fuzzy variable concept can be extended as a fuzzy field.

Consider the case presented in Fig. 1, where a single input variable θ exhibits spatial dependence. In that
case, for simplicity, there is information (i.e., physical measures) of the input parameter at two specific locations
on the domain Ω (x1 and x2 in Fig. 1). These positions correspond to the control points . In each control point, it
is possible to characterize the parameter as a fuzzy variable (blue membership functions in Fig. 1). For a specific
membership level αj , note that it is possible to associate an interval as in eq. (3), but now at each location. Using
base functions Ψ (see Faes and Moens [2]), the information in the control points is projected to any position on
the domain. As a result of that procedure, the interval field associated with αj is obtained (red area in Fig. 1). If
this process is repeated for different membership levels, it discretely approximates the input parameters as a fuzzy
field.

μθ̃(θ)

θ(x)

x

0

1

θ1,α

αj

x2

x1 θ2,α

Figure 1. Fuzzy field schematic representation.

Note that: (1) this strategy is appropriate when there is limited data of an input parameter of the model at
specified locations on the domain, and (2) fuzzy fields allow propagating the uncertain input information to the
finite element mesh. If it is considered as a representative coordinate of each finite element its centroid, then the
information of the uncertain parameters propagated to these coordinates θC is given by,

θC = Ψ(XC ,Xb)θb (6)

where XC is a matrix whose columns contains the coordinates of each finite element centroid; Xb is a
matrix whose columns contains the coordinates of the control point; Ψ(XC ,Xb) is a matrix that contains the base
functions information, and θb contains the interval information of the uncertain parameters at control points. From
eq. (6), is clear that the uncertainty in the input parameters is reduced to the information contained in the control
points. The components of the matrix Ψ are derived from the eq. (7),

ψj(x,Xb) =
wj(x,xb,j)∑nb

j1=1 wj1(x,xb,j1)
, j = 1, . . . , nb (7)

where ψj is the j-th base function with j = 1, . . . , nb, wherein nb corresponds to the number of control point
considered in Ω; wj(x,xb,j) is the weight function between a specific spacial coordinate x and the node location
vector xb,j . In this proposal, the weight functions wj correspond to the inverse distance weighting function (see
Faes and Moens [2]).
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2.3 Reduced order model

Direct solution of eqs. (4) and (5) can be quite demanding from a numerical viewpoint, as they demand
repeated evaluation of the equilibrium equation (see eq. (2)). A possible means to decrease numerical costs consists
of applying a reduced order model. Thus, the approximate response in terms of hydraulic head HA(θ), dependent
on the considered fuzzy fields, can be expressed as the linear combination of several known components. These
components constitute the reduced basis Φ, which is constructed by means of a single exact analysis of the system
plus a sensitivity analysis of the response concerning the uncertain parameters (see Valdebenito et al. [5]). This
sensibility analysis demands performing a single system evaluation as well. As part of this sensibility analysis, the
partial derivatives are calculated analytically using a direct method (see Haftka and Gürdal [6]) and evaluated at a
nominal point θ0. The nominal point satisfies that µθ̃i

(θ0i ) = 1, i = 1, . . . , nθ.
The expression to obtain the approximate hydraulic head HA(θ) is given by:

H(θ) ≈ HA(θ) = Φβ(θ) (8)

where β(θ) is a vector whose components depend on the uncertain parameters. From eq. (2), which admits
the characterization of the input parameters as fuzzy fields, and using the reduced basis Φ, the reduced system
corresponds to:

KR(θ)β(θ) = QR(θ) (9)

where KR(θ) is the stiffness matrix of the reduced system: KR(θ) = ΦTK (θ)Φ, and QR(θ) is the
reduced flow vector: QR(θ) = ΦTQ (θ).

To control the error introduced by the reduced order model, one can investigate the residual error associated
with the equilibrium equations considering the approximate response (see Gogu et al. [7]). That is,

ε(θ) =
∥K(θ)HA(θ)−QA(θ)∥

∥QA(θ)∥
(10)

where ε(θ) is the error measure and ∥ · ∥ denotes Euclidean norm. The error ε(θ) is monitored at each α-cut
during the optimization process (i.e. solution of eq. (4) and eq. (5)). The reduced basis was updated each time the
largest error produced for one limit (for a specific membership level) exceeded a predefined defined threshold εt.

3 Example

The analysis of steady-state confined seepage below an impermeable dam is considered to illustrate the pro-
posed approach. The geometrical definition of the system is based on the work of Valdebenito et al. [8]. The dam
is founded on a permeable soil layer limited by an impermeable rock layer. The objective is to determine the flow
that drains downstream of the dam. The dam’s upstream side retains a water column of a height of 10 [m]. The soil
layer has a depth of 20 [m], and its horizontal kH and vertical kV permeability are characterized as fuzzy fields.
Four control points were considered, where the dependence between both permeabilities is included considering
0.1kH ≤ kV ≤ kH (see Fanchi [9]). The membership functions associated with each control point are shown in
Fig. 2.

A simple finite element model is considered, which comprises 3183 nodes and 1498 quadratic triangular
elements. The system was studied considering two models: the exact model and the approximate model R1. The
results were evaluated considering that (a) there is no basis updating process (εt → ∞), and (b) there is a basis
updating process with a threshold of εt = 10−4.

Figure 3 presents the estimation of the membership function associated with the response. The results pro-
duced with the reduced basis R1 provide satisfactory match with the exact system’s response. In case (a), some
minimum discrepancies can be noted for low values of the membership function on the left side. These differences
are not present when the procedure considers the basis updating strategy. Note that the proposed approach brings
good benefits regarding to the computation time. The speedup factor associated with R1 is 45.6 for εt → ∞ while
the speedup factor associated with R1 for εt = 10−4 is 35.1.
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(a) Control point 1. (b) Control point 2.

(c) Control point 3. (d) Control point 4.

Figure 2. Membership function of permeabilities at control points. Each control point is located at: (a) x = 30
[m], y = 4.5 [m]. (b) x = 30 [m], y = 15 [m]. (c) x = 75 [m], y = 2 [m]. (d) x = 75 [m], y = 9 [m].

(a) εt = ∞ (b) εt = 10−4

Figure 3. (a) Membership function associated with the response for εt = ∞. (b) Membership function associated
with the response for εt = 10−4.
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4 Conclusions

This contribution presents a technique to estimate the fuzzy response of a seepage problem considering the
spatial uncertainty in soil permeability by applying a reduced order model. The approach is formulated to prop-
agate the uncertain permeability characterized by fuzzy fields through an optimization scheme. In particular, the
subsequent challenges are addressed: (1) spatial dependencies in the horizontal and vertical permeability; and (2)
the numerical cost associated with the resolution of the exact system.

The results demonstrate that a precise estimation of the fuzzy response can be obtained at reduced numerical
efforts, controlling the quality of the results. Furthermore, it exhibits that fuzzy fields are a useful strategy for
spatial uncertainty quantification under limited data. Nevertheless, the exhibited results should be regarded as
an initial approximation of fuzzy field analysis. Forthcoming studies steps will aspire to explore more complex
systems, for example, considering other types of responses and extensions to more physical dimensions.
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