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Abstract. This work describes the diffusion-convection process of transport of the drug (doxorubicin) administered
by bolus injection through the tumor and interstitium. We numerically solve a coupled system of partial differential
equations that models the drug transport, its uptake, and effect in the tumor.

It is used a high order finite difference method that allows to accurately describe the drug effect in the tumor.
In fact, we can determine the time needed by the drug to reduce the tumor cell density and approximate the drug
spatial distribution in the tumor and interstitium. In addition, the simulations shows how the doxorubicin effect in
the tumor increases as its dose level increases.
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1 Introduction

Anticancer drug transport and uptake in tumors have been extensively studied, see Baxter and Jain [1], Eiken-
berry [2], Liu et al. [3], Zhan et al. [4]. El-Kareh and Secomb [5] and Eikenberry [2]. These models do not consider
the influence of blood and lymphatic vessels or realistic tumor geometry. Zhan et al. [4], on the other hand, consider
these effects but not account cell proliferation and physiological degradation on the rate of change in tumor cell
density. In this work, we consider instead all these factors in the tumor cell density and drug transport mathematical
model and describe their effects on drug distribution and mass tumor reduction.

The partial differential equations model used are described in section 2. In section 3, we present the discrete
operators and the numerical discretization of the model similar to that presented in Borges et al. [6]. In section 4,
numerical experiments illustrating the behavior of the mathematical model are included. Finally, in section 5, we
present some conclusions.

2 Formulation of problem

We assume the following simplifications in our model. The geometry of the tumor is spherical, with a radius
of Ro, the tumor’s interior is located in the center and occupies the volume of a sphere of radius Ri. Doxorubicin
concentrations and tumor density depend on time and on the distance r respect the sphere center. The model has
two boundaries: an internal between the tumor and normal tissue and the outer of the normal tissue. On the interior
boundary, conditions of continuity for the free concentration and fluid flux are applied and, on the outer border,
zero flux of drug concentration is assumed, the velocity and diffusion coefficient are supposed constant in time and
space.

Free doxorubicin transport in the tumor under the above assumptions is described by the following partial
differential equation with initial and boundary conditions
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where Cf is the free doxorubicin concentration, r = 0 represents the tumor center, v is the velocity of the
interstitial fluid, Df is the corresponding diffusion coefficient that is, Dft in the tumor and Dfn in the normal
tissue. Si is the net rate of doxorubicin gained from the surrounding environment given by Si = Sv + Sb + Su, in
which Sv is the net doxorubicin gained from the blood/lymphatic vessels given by the difference of doxorubicin
gained from the normal tissues Fs(t, Cv, Cf ) and by the doxorubicin loss to the lymphatic vessels per unit volume
of tissue Fls(Cf ). That is, Sv = Fs − Fls.

On the other hand, Sb represents the association /dissociation with bound doxorubicin-protein

Sb = kdCb(r, t)− kaCf (r, t), (2)

where ka and kd are the doxorubicin-protein binding and dissociation rate, respectively. Finally, Su represents
the influx/efflux from tumor cells

Su = Vmax

(
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− Cf (r, t)
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)
Dc(r, t), (3)

where Dc is the tumor cell density, ke and ki are parameters obtained from experimental data, Vmax is the
rate of trans-membrane transport and φ is the volume fraction of extracellular space.

Remark 1: Note that Si = Sv +Sb in the interstitium surrounding the tumor (Ri, Ro) and in the tumor (0, Ri) we
have Si = Su.

In (Ri, Ro), some proteins can bind to the free drug Cf , and transform into bound doxorubicin Cb, as it is
described in the following Cb equation with its boundary and initial conditions
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where the parameters ka and kd are given in eq. (2).
Along the time, an amount of free doxorubicin crosses the border of the tumor into its interior. This doxoru-

bicin is called intracellular, denoted by Ci satisfies the following ordinary differential equation
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Finally, we have the relationship between intracellular concentration and cell density Dc
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The term fmax is the cell-kill rate constant and EC50 is the drug concentration producing 50% of fmax. kp
and km are the cell proliferation rate constant and physiologic degradation rate, respectively.

Remark 2: All the parameters described in the previous equations are taken from Zhan et al. [4] and El-Kareh and
Secomb [5].

3 Numerical Discretization and Discrete Operators

In this section we describe the numerical method used to approximate the solution of eq. (1), eq. (4), eq. (5)
and eq. (6) and its finite difference operators. First, we introduce the spatial domain [0, Ro] with a grid given by
{rj ∈ R, j = 0, . . . , N1 +N2} where hj = rj − rj−1, r0 = 0, rN1 = Ri, rN1+N2 = Ro. In time domain [0, T ]
we introduce {tn, n = 0, . . . ,M} with t0 = 0, tM = T and step-size ∆t. Now, we describe the finite operators
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Remark 3: Note that if the mesh is non-uniform, the centered operator Dcen is first order.
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where Mh(r
2
j ) is the average operator. We specify in what follows the discretization of the boundary condi-

tions eq. (1) and eq. (4) using the discrete operators described in eq. (7).
At r = Ro we consider
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At r = 0 we consider

DcenC
n+1
f,r = 0. (12)

Finally, with the initial conditions

C0
f,j = 0, C0

b,j = 0, C0
i,j = 0, D0

c,j = Dco, j = 0, . . . , N1 +N2, (13)

we complete the finite-difference system eq. (9).

4 Numerical results

We illustrate some numerical simulations of our model eq. (9)- eq. (13) using the method described in the
previous section. In the numerical implementation we use a time step ∆t = 10−5 and hj = 3.7 ∗ 10−3 in (0, Ri)
and step size hj = 6.2 ∗ 10−3 in (Ri, Ro). In the following, we find the figures for Cf , Cb, Ci, and Dc at different
times T (in minutes), respectively.

Figure 1. Free and Bound Doxorubicin Concentration in spatial domain respective with a dose 85600µg/m2.

Figure 2. Intracellular Doxorubicin Concentration and, Density Cell in tumor domain with a dose 85600µg/m2.

Fig. 1 and Fig. 2 show the radial distribution of concentrations and density at different times.
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5 Conclusions

In Fig. 1 and Fig. 2, we note that for a sufficiently large time, the free concentration is less than the bound
concentration. This behavior may be due to the exponential decay of the source term Cv = DdAe−αt, where
Dd is doxorubicin dose injected, A is the compartment parameter, and α is the compartment clearance rate. In
addition, in comparison with the results in Zhan et al. [4], we observed that in our model, the concentrations are
more retained in normal-tumor tissue for large times.

An increasing of doxorubicin dose leads to an higher level of drug concentration in all regions (normal and
tumor tissue) and decay of tumor cell density, see Fig. 3

Figure 3. Tumor cell density at 120 minutes with different doses.

We observe in Fig. 1 that the following is satisfied for later times

Cb =
ka
kd

Cf ≈ 3Cf . (14)

This justifies that the parabolic problem eq. (1) reaches the equilibrium already at t = 30 minutes when we
have no source. In fact from Sv + Sb = 0 we can deduce directly the relation eq. (14).

[7]
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