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Abstract. Viscoelastic supports (VES) are a simple solution for vibrations in rotating machinery with a low 

associated cost. The objective of this work is to complement an optimal design methodology for VES, developed 

by the GVIBS/UFPR group for rotating systems subject to unbalanced excitations, inserting a static stiffness in 

parallel, whose purpose is to increase the load capacity of the device. The dynamic behavior of the rotating system 

is represented through the finite element method. For the viscoelastic material, the fractional derivatives model of 

four parameters is used, which allows considering the effect of temperature and excitation frequency. For the 

optimal design, the concept of generalized equivalent parameters (GEP) is used, allowing to describe the equation 

of motion of the composed system with VES, being able to obtain the response of the composed system in a space 

or subspace of the primary system, efficiently from a computational time perspective. The primary system is 

modeled considering a simple rotor and the support is introduced via GEP. Nonlinear techniques allow for optimal 

design of the VES. Numerical simulations on rotors with known dynamic behavior allow showing the results of 

the proposed methodology and the effectiveness of viscoelastic supports. 

Keywords: Rotordynamics, Passive vibration control, Viscoelastic materials, Optimization, Viscoelastic supports. 

1  Introduction 

Rotating machines such as pumps, compressors, electric motors and turbo-generators are widely used in the 

most diverse sectors of the production system, including oil and gas and energy. In these sectors, the relentless 

search for greater energy efficiency and high productivity stands out, since their costs reflect throughout the 

production chain. Thus, rotating machines capable of providing high power with low energy consumption, volume 

and mass, but with high operating safety and reliability become essential. 

Increasing the energy efficiency of rotating machines is mainly achieved by operating at elevated nominal 

speeds and through the use of thinner shafts. Such configuration, however, generates operating conditions close to 

its critical operating conditions from the perspective of vibration level. Systems that operate at high speeds 

generally operate at supercritical speeds, that is, during starts and stops, the equipment passes through at least one 

critical speed, which is the speed that excites the system at one of its natural frequencies, causing high radial 

vibrations. 

In order to enable safe operation under conditions that provide high energy efficiency, several control 

methods are studied for rotating systems. Among them is the use of viscoelastic supports (VESs), which are support 

elements of the rotating system that have elements with high energy dissipation capacity, in this case, viscoelastic 

materials (VEMs). These devices have great potential for passive vibration control in rotating machines due to the 

associated low cost and high performance in vibration control. Several works have been developed by GVIBS 

research group to consolidate the use of viscoelastic supports as an option for vibration control in rotating 

machines, among them the works of Bavastri et al [1], Silvério [2] and Ribeiro [3].  
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Aiming to increase the load capacity of the VESs, both to support the own weight of the rotating system and 

to support external loads, the present work proposes the insertion of a static stiffness in parallel with the viscoelastic 

layers in the device. The optimal design is carried out to provide the maximum reduction in system vibration 

response over the systems operating range. 

2  Mathematical model 

2.1 Viscoelastic support model 

Viscoelastic materials are those whose behavior combine elastic and viscous properties, i.e. store and 

dissipate mechanical energy. Many mathematical models were developed to represent the dynamic behavior of 

these materials, among them, the four-parameter fractional derivative model, as described in Bagley and Torvik 

[4]. This model adequately represents a linear VEM on the frequency domain. The complex shear modulus is given 

by 

 𝐺̄(𝛺, 𝑇) =
𝐺0+𝐺∞𝑏1(i𝛺)𝛽

1+𝑏1(i𝛺)𝛽
, (1) 

where 𝐺0 represents its lowest asymptotic value of the modulus and 𝐺∞its upper asymptotic value, 𝑏1 is a constant 

related to the material relaxation time and 𝛽 is the fractional order of the derivative. 

The VEM’s dependency of temperature is considered as a shift in the frequency domain for simple 

thermoreologic materials. According to Ferry [5], this displacement is written as 

 𝛼(𝑇) = 10
−𝜑1

(𝑇−𝑇0)

(𝜑2+𝑇−𝑇0), (2) 

where 𝜑1 and 𝜑2 are parameters of the material experimentally determined and 𝑇0 is the reference temperature. 

Considering the inverse proportionality of thermorheologically simple materials to variations in dynamic 

behavior with temperature and frequency, up to a scale factor, it is possible to define a single parameter that allows 

describing the dynamic behavior as a function of temperature and frequency. This parameter is called reduced 

frequency and is defined as 

 Ω𝑟(𝑇) = 𝛼(𝑇)Ω. (3) 

Thus, Eq. 1 can be rewritten, giving the complex shear modulus as function of frequency and temperature as 

 𝐺̄(𝛺, 𝑇) =
𝐺0+𝐺∞𝑏1(i𝛺𝑟)𝛽

1+𝑏1(i𝛺𝑟)𝛽
. (4) 

The complex stiffness of a VEM sheet is associated with its geometric factor 𝑙𝑔, as 

 𝑘̄(Ω) = lg𝐺̄𝑎(𝛺), (5) 

where 𝐺̄𝑎(𝛺) is the apparent shear modulus, obtained multiplying 𝐺̄(𝛺) by the form factor 𝑙𝑓 , according to Nashif 

et al [6]. The influence of 𝑙𝑓, although, is soft, because in this work a pure shear strain state in the VEM sheet is 

considered. 

        The VES proposed in this work is composed by two parallel stifness, the equivalent stiffness of the 

bearing with viscoelastic sheets and a static stiffness – called static because it does not vary with frequency. Fig. 

1 presents the proposed VES representation. Because of its parallel configuration, the total equivalent stiffness of 

the support is the sum of the equivalent stiffness of the viscoelastic part and the static stiffness. 

In the present paper, the viscoelastic part model used is the one with one additional DOF. According to 

Ribeiro [3], this model is dynamically equivalent to the traditional model, which adds DOFs to the system. The 

equivalent stiffness of it is obtained through the GEP approach, as presented in Ribeiro [3]. The translational and 

angular equivalent stiffness coefficients are given, respectively, by 

 𝑘̅𝑡 𝑉𝐸(Ω) = 𝑘𝑡𝑏 −
𝑘𝑡𝑏

2

𝑘𝑡𝑏+𝑘̅𝑡1(Ω)−Ω2𝑚𝑏−
(𝑘̅𝑡1(Ω))2

𝑘̅𝑡1(Ω)+𝑘̅𝑡2(Ω)−Ω2𝑚𝑓1

 (6) 

and 
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 𝑘̅𝑟 𝑉𝐸(Ω) = 𝑘𝑟𝑏 −
𝑘𝑟𝑏

2

𝑘𝑟𝑏+𝑘̅𝑟1(Ω)−Ω2𝐼𝑏−
(𝑘̅𝑟1(Ω))2

𝑘̅𝑟1(Ω)+𝑘̅𝑟2(Ω)−Ω2𝐼𝑓1

. (7) 

The subscripts 𝑡 and 𝑟 are related to the DOF which the control is provided, translational or rotative, while the 

subscript 𝑏 is related to the bearing. 𝑘 is the stiffness, 𝑚 is mass and 𝐼 is the moment of inertia. 

Then, the VES equivalent stiffness, for translational and angular cases, is given by 

 𝑘̅𝑡 𝑒𝑞(Ω) = 𝑘̅𝑡 𝑉𝐸(Ω) + 𝑘𝑡 𝑠𝑡 (8) 

and 

 𝑘̅𝑟 𝑒𝑞(Ω) = 𝑘̅𝑟 𝑉𝐸(Ω) + 𝑘𝑟 𝑠𝑡. (9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. VES with parallel static stiffness representation. 

2.2 Unbalance response 

Through the generalized equivalent parameters (GEP) methodology, developed by Espíndola and Silva [7] it 

is possible to describe the dynamic of the composed system (rotor + VES) in terms of the generalized coordinates 

of the primary system, the system to be controlled, a constrained rotor with known elastic bounds. The modal 

parameters of the primary system are used as a basis in the modal space to describe the response of the composed 

system. This is possible because the utilization of the concept of simplified Campbell, proposed by Espíndola and 

Bavastri [8], which allows to describe the modal parameters of the primary system independently from the 

frequency for the case of synchronous excitation, as unbalance. The influence of the supports in the system are 

considered using the VES equivalent stiffness. According to Ribeiro [3], the equations of motion of the composed 

system in the frequency domain, in the space state are 

 [𝐂 𝐌̂
𝐌̂ 𝟎

] {
i𝛺𝐐(𝛺)

−𝛺2𝐐(𝛺)
} + ([

𝐊 𝟎
𝟎 −𝐌̂

] + [
𝐊̄eq(Ω) 𝟎

𝟎 𝟎
]) {

𝐐(𝛺)
i𝛺𝐐(𝛺)

} = {
𝐅(𝛺)

𝟎
}, (10) 

or simply 

 (i𝛺𝐀 + 𝐁 + 𝐁𝐞𝐪)𝐘(𝛺) = 𝐍(𝛺). (11) 

In Eq. 10, 𝐌̂ results from the use of the simplified Campbell concept and is 𝐌̂ =  𝐌 − i𝐆0. 𝐊̄eq(Ω) is the sparse 

matrix in which the VES equivalent stiffness are inserted, in the respective positions related to the node of link 

between the VES and the rotor, as 
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                …           𝑢                 𝑣                  𝜃                 𝜓    ... 

 𝑲̅𝒆𝒒(Ω) =

[
 
 
 
 
 
 
⋱ 0 0
0 𝑘̅𝑡 𝑒𝑞(Ω) 0

0 0 𝑘̅𝑡 𝑒𝑞(Ω)

    0      0 0
      0        0 0
     0             0       0

0       0             0      
0   0    0
0   0    0

𝑘̅𝑟 𝑒𝑞(Ω) 0 0

0 𝑘̅𝑟 𝑒𝑞(Ω) 0

0 0 ⋱]
 
 
 
 
 
 ⋮
𝑢
𝑣
𝜃
𝜓
⋮

. (12) 

 

The unbalance response of the composed system in terms of the generalized coordinates of the rotor is given 

by 

 𝐐(𝛺) = 𝚯(i𝛺𝐈 + 𝚲 + 𝚿T𝐁eq𝚯)
−1

𝚿T𝐅(𝛺), (13) 

where 𝚯 and 𝚿 are the orthonormalized eigenvectors, 𝐈 is the identity matrix and 𝚲 is the spectral matrix, which 

contain the eigenvalues on its main diagonal. 𝐅(𝛺) is the unbalance excitation vector. 

 

2.3 Optimization 

A hybrid optimization technique is used to obtain the VES optimum parameters in terms of the unbalance 

response of the compound system. Combining genetic algorithms (GA) and the Nelder-Mead method, it is possible 

to obtain the global minimum with relative low computational time. The optimization begins with GA to get points 

close to global minimum. The Nelder-Mead technique start from this to obtain the global minimum point, located 

at the region. 

The optimization problem is defined as 

 min 𝑓(𝒙): 𝐃𝐧 → 𝐃, (14) 

where 𝒙 is the design vector, composed by the parameters of the VES. This depends on the type of VES designed, 

in the most general case, the combined VES, the design vector is given by 

 𝒙 = {𝑙gt1, 𝑙gt2, 𝑙gr1, 𝑙gr2, 𝑚f, 𝐼f}. (15) 

In the case of a translational VES, for instance, the terms related to the angular DOFs (𝑙gr1, 𝑙gr2 and 𝐼f) would not 

appear in Eq. 15, the same happens to the angular VES with terms related to translational DOFs. Preliminary 

studies shown that the optimization of the parallel stiffness results in extreme values for this parameter. When the 

optimization is done for a point in the middle of the shaft, the optimum stiffness obtained is very small. On the 

other hand, when the optimization is done for the support point, the stiffness results extremely high. These results 

are coherent with the physical phenomena but are not interesting from the design perspective of the device. Thus, 

it was decided to define the static parallel stiffness from the maximum static deflection allowed to the system and 

optimize the VES parameters which combined with this stiffness results in the minimum unbalance response.  

The cost function to be minimized is the maximum value of the unbalance response vector in one or more 

selected generalized coordinates of the rotor, i.e. 

 𝑓(𝐱) = max |𝐪(𝒙, 𝛀) |, (16) 

with  

 𝐟(𝒙, 𝛀) = 𝐐𝑗(𝛀). (17) 

3  Numerical simulations 

The analysis of the control provided by the optimal VESs designed is conducted comparing the unbalance 

responses of the system supported in rolling bearings and supported in VES in the frequency domain via numerical 

simulations. The finite element model of the rotor supported in rolling bearings is presented in Fig. 2. It consists 

in a shaft divided in 8 elements, one disc and two rolling bearings. The data present in the model is shown in Table 



B. F. A. Prado, C. A. Bavastri, E. A. Ribeiro 

CILAMCE-2022 

Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu, Brazil, November 21-25, 2022 

 

1. 

 

 

 

 

 

 

 

 

 

Figure 2. Rotor finite element model. 

The frequency unbalance response of the rotor supported in rolling bearing is presented in Fig. 3, in log scale. 

For comparison, four VESs were optimally designed, without and with the static parallel stiffness for purely 

translational VES and purely angular VES, in order to evaluate the unbalance response control and the influence 

of the parallel stiffness in each case. For the purely angular VES, there are angular stiffness on the bearings, besides 

the properties shown in Table 1. It is necessary to consider it to transfer the shaft tilt to the VES sheets. In this 

case, isotropic angular stiffness is considered as 1 kN/m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Primary system’s frequency unbalance response. 

Table 1. Rotor-bearing data 

Shaft 

Length [mm] Diameter [mm] Density [kg/m³] Young Mod. [GPa] Poisson ratio 

550 50 7800 200 0.3 

Disc 

Position [mm] Diameter [mm] Thickness [mm] Density [kg/m³] 

250 125 50 7386 
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Rolling bearings 

𝑘𝑥𝑥[kN/m] 𝑘𝑧𝑧[kN/m] 𝑐𝑥𝑥[Ns/m] 𝑐𝑧𝑧[Ns/m] Mass [kg] Inertia [kgm²] 

2300 2300 500 500 0.15 1.8 10−5 

Unbalance 

Position [mm] Magnitude [mm] Phase [°] 

250 75 0 

 

The VEM used in the simulations is a butyl rubber, its parameters are presented in Table 2. 

Table 2. VEM parameters 

G0[MPa] G∞[MPa] b1 β φ1 φ2 T0[K] 𝑇[K] 

3.57 179 0.00246 0.435 6.57 68 273 295 

 

4  Results 

Table 3 presents the optimization results for all VES models studied. The parallel stiffness was obtained 

dividing the rotors weight by the maximum deflection allowed, defined as 0.5 mm. Fig. 4 presents the frequency 

unbalance response of the composed system for the four optimum VES in linear scale. 

Table 3. Optimization results 

Translational VES 

𝑙𝑔𝑡1[m] 𝑙𝑔𝑡2[m] Mass [kg] Parallel Stiffness [kN/m] 

0.0249 0.0027 0.476 - 

0.3804 0.0684 4.932 84.7 

Angular VES 

𝑙𝑔𝑟1[m] 𝑙𝑔𝑟2[m] Inertia [kg.m²] Parallel Stiffness [kN/m] 

0.0849 8.4742 10−5 0.0036 - 

0.0108 7.9092 10−5 0.0034 84.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Frequency unbalance response of purely translational and purely rotational, without and with static 

parallel stiffness.  



B. F. A. Prado, C. A. Bavastri, E. A. Ribeiro 

CILAMCE-2022 

Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu, Brazil, November 21-25, 2022 

 

Comparing the frequency unbalance response of the primary system (Fig. 3) with the response of the 

compound system (Fig. 4) for any type of VES it is possible to claim that all designs have great capacity for 

control. When comparing the composed system response for the different types of VESs, it is noticed that the 

control provided by translative DOFs is more effective than by rotational DOFs. On the other hand, it is possible 

to claim that the influence of parallel static stiffness on the response for the purely rotational VES impact less the 

control provided than the purely translational device. 

Trough the analysis of the optimum parameters obtained for the devices, shown in Table 3, it is noticed that 

the results of the optimization vary more between the case of the device without and with parallel stiffness for the 

translational VES. 

5  Conclusions 

This paper presented a methodology for optimal design of VES with static parallel stiffness for unbalance 

response control. Insertion of the stiffness in the device improves it load capacity, enabling its application in 

heavier and more robust rotating equipment. Four types of VES were numerically simulated to comprehend the 

influence of the stiffness in the system’s behavior. Simulations showed that the VESs with static parallel stiffness 

are able to control the unbalance response.  

All devices result in great reduction of unbalance response, the greater is obtained with purely translational 

VES. The rotational VES is less sensitive to the static parallel stiffness than the translational. 
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