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Abstract. The identification of the modal content of a dynamical system through the excitation frequency 

scanning procedure is a very common procedure, especially with regard to experimental models. In terms of 

numerical simulation, this technique is also very accessible and computationally inexpensive. In the case of the 

Boundary Element Method (BEM), this procedure is much simpler than the direct solution of the associated 

eigenvalue problem, if the fundamental solution is frequency-dependent since the problem becomes nonlinear. In 

order to simplify the solution of these problems with the BEM, which are stationary acoustics problems 

governed by the Helmholtz equation, techniques were developed that use simpler fundamental solutions. Among 

these are the well-known dual reciprocity technique (DRBEM) and the more recent direct interpolation 

technique (DIBEM). Both are characterized by employing radial basis functions and thus avoiding domain 

integrations generated by the reactive term of the governing equation; however, Dual Reciprocity interpolates 

only the primal variable of the problem, while the Direct Interpolation technique approximates the entire kernel 

of the domain integral. Although they allow the direct solution of the eigenvalue problem, this article compares 

the two techniques mentioned to solve the problem of stationary acoustics, through scanning of imposed 

frequencies. The stationary data was obtained in a chosen frequency range. Error curves are obtained by 

comparing numerical solutions and available analytical solutions for a more accurate assessment.  
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1  Introduction 

Only Great challenges have arisen with the advances in modern engineering, and so the search for solutions 

to engineering problems with a high level of sophistication becomes necessary. In this context, formulations 

related to numerical methods are in a prominent position and have evolved significantly. Several research 

projects have pointed out a good performance of the Boundary Element Method (BEM) in applications in which 

the operators that mathematically characterize the governing equation are self-adjoint [1]. However, some 

problems are not expressed by differential operators that have this specific property or they present a very 

complex inverse integral form. 

Thus, the development of BEM formulations that transform domain integrals into boundary integrals using 

approximations with a sequence of Radial Basis Functions (RBF), has become one of the main means of arriving 

at this inverse form. The first strategy to solve domain action problems consists of the so-called Dual Reciprocity 

(DRBEM) developed by Nardini and Brebbia [2] in 1982 with the purpose of solving dynamical problems [3], 

and later its application was extended to other classes of problems, for example, diffusion in transient regime [4] 

and acoustic problems [5]. 

Briefly, DRBEM consists of transforming the domain action by a linear combination of a product of new 

functions, which can be operationalized and thus transform domain integrals using the properties of integration 

by parts and the Divergence Theorem. Although the results are satisfactory for some applications, the DRBEM 

faces some difficulties, such as requiring too many interpolations basis points (poles) to accurately represent the 
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solution. This large number of poles results in problems of poor matrix conditioning and numerical inaccuracies. 

Recently, a new alternative has been proposed that also uses RBF to solve domain action problems, called 

Direct Interpolation (DIBEM) [6]. Different from DRBEM, where there is the formation of two new auxiliary 

matrices, which are applied to the traditional boundary element matrices H and G, in DIBEM the complete 

kernel of the domain integral is approximated, including the fundamental solution and, consequently, presents 

fewer inaccuracies and numerical instabilities since the transformation to eliminate the domain integral is 

composed of a single matrix. Thus, the DIBEM is a technique more similar to a classical interpolation procedure. 

It is noteworthy that the DIBEM, although recent, has been successfully implemented in two-dimensional 

problems involving the solution of the Poisson equation [6] and the Helmholtz equation [7]; however, it is also 

still under testing through new applications, for example, the elasticity problems and the acoustic wave 

problems. 

Thus, a frequency scanning procedure (i.e., response problems) was chosen to compare the performance of 

the two solution techniques based on the BEM procedure, solving two-dimensional problems, related to the 

Helmholtz equation. The goal with this analysis is to highlight the performance of the DIBEM technique 

compared to the DRBEM technique. For the example studied, linear elements are used in all formulations. 

2  Governing Equation 

Initially, the Helmholtz Equation can be interpreted as a simplification of the Acoustic Wave Equation [8, 

9], in which the stationary amplitude 𝑢(𝑿) is produced in the system by a variable excitation whose frequency 𝜔 

is known. Therefore, for a two-dimensional case, the governing equation is given: 

 𝑢,𝑖𝑖 (𝑿) = −
𝜔2

𝑘2
𝑢(𝑿) (1) 

It is important to emphasize that when the physical problem is expressed by means of differential 

equations, it becomes necessary to complement the differential equation with certain additional information, 

called boundary conditions, so that the physical problem is well characterized and presents a single solution. 

Thus, the two main types of these conditions assumed here are presented: (a) Essential Boundary Condition 𝛤𝑢 

(or Dirichlet's), which prescribes the basic or potential variable along the physical problem domain boundary; (b) 

Natural Boundary Condition 𝛤𝑞  (or Neumann's), which prescribes the normal derivative of the basic variable. It 

is interesting to point out that the domain 𝛺(𝑿) can represent a system, a body or a control volume of a given 

physical problem. 

Thus, considering the mathematical procedures known in the context of the Boundary Element Method 

(BEM) [10], one has the inverse integral form associated with Eq. (1), resulting in the following equation: 

 𝑐(𝝃)𝑢(𝝃) + ∫ 𝑢(𝑿)𝑞∗(𝝃; 𝑿)𝑑Γ − ∫ 𝑞(𝑿)𝑢∗(𝝃; 𝑿)𝑑Γ
Γ

=
𝜔2

𝑘2
∫ 𝑢(𝑿)

Ω

𝑢∗(𝝃; 𝑿)𝑑Ω
Γ

 (2) 

In Eq. (2), the term 𝑿 represents the field point of a specific domain 𝛺(𝑿) with boundary set at 𝛤(𝑿). The 

prescribed source point in the system is 𝝃; and 𝑘 is the propagation velocity of acoustic waves. The term 𝑐(𝝃) is 

a coefficient that submits from the location of the source point 𝝃 to the domain 𝛺(𝑿) and, considering that it may 

be located on the boundary 𝛤(𝑿), the smoothness also influences [1]. It is emphasized that, 𝑢(𝑿) is the scalar 

potential and 𝑞(𝑿) is its normal derivative; 𝑢∗(𝝃; 𝑿) is the fundamental solution correlated to the Laplace 

problem and 𝑞∗(𝝃; 𝑿) is its normal derivative [1, 10]: 

 𝑢∗(𝝃; 𝑿) = −
ln[𝑟(𝝃; 𝑿)]

2𝜋
 (3) 

In Eq. (3), 𝑟(𝝃, 𝑿) is the Euclidean distance between the source point 𝝃  and any point in the domain 𝑿; and 

𝜂𝑖(𝑿) is the outer normal on the boundary 𝛤(𝑿). Thus, the Dual Reciprocity (DRBEM) and Direct Interpolation 

(DIBEM) procedures make use of a fundamental solution 𝑢∗(𝝃, 𝑿); however, they differ in their approach to the 

domain integral referring to inertia in the Helmholtz Equation (i.e., the direct side of Eq. (2)). In the following 

sections, due to limited space, the main aspects of both formulations are presented. Therefore, the detailed 

development of DRBEM and DIBEM can be found in the specialized literature [2, 6]. 
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3  Dual Reciprocity Technique 

The technique of Dual Reciprocity (DRBEM) was initially developed by Nardini and Brebbia [3] for 

dynamical problems, and later Loeffler and Mansur [5] extended its use to model problems with domain actions, 

which proved to be efficient. Briefly, the first step of the DRBEM approach consists in proceeding to the 

following approximation for the potential present in the kernel of the domain integral of Eq. (2): 

 u(𝑿) ≈ 𝛼𝑖𝐹𝑖(𝑿𝒊; 𝑿) = 𝛼𝑖Ψ,𝑗𝑗
𝑖 (𝑿𝒊; 𝑿)  (4) 

In Eq. (4) the coefficients 𝛼𝑖 are initially unknown and 𝐹𝑖(𝑿𝒊; 𝑿) are the auxiliary interpolation functions 

that belong to the class of Radial Basis Functions (RBF) [11]. The functions 𝛹𝑖(𝑿𝒊; 𝑿) are primitives of the 

functions of 𝐹𝑖(𝑿𝒊; 𝑿); thus, allowing the transformation of domain integrals into boundary integrals, through 

the aid of the methodology of integration by parts and application of the Divergence Theorem. In operational 

terms, it is generally interesting to choose arbitrary base points 𝑿𝒊 in coincidence with nodal points. These points 

should also be located internally to improve the proposed interpolation within the domain. After applying this 

procedure, it is possible to write the domain integral generated by the integral formulation as follows: 

 ∫ 𝑢(𝑿)𝑢∗(𝝃; 𝑿)𝑑Ω = −𝛼𝑖 {𝑐(𝝃)Ψ𝑖(𝝃) + ∫ [𝜂𝑖(𝑿𝒊; 𝑿)𝑢∗(𝝃; 𝑿) − 𝛹𝑖(𝑿𝒊; 𝑿)𝑞∗(𝝃; 𝑿)]
Γ

𝑑Γ}
Ω

  (5) 

It is interesting to point out at this point that 𝜂𝑖(𝑿𝒊; 𝑿) and 𝛹𝑖(𝑿𝒊; 𝑿) are known functions and are related 

to the function 𝐹𝑖(𝑿𝒊; 𝑿), which in turn can be chosen arbitrarily. Generally, using the mathematical procedures 

known in the BEM context, the field points are taken in coincidence with the source points 𝝃. For reasons of 

space, the discretization procedure and the matrix treatment of this equation will not be presented. Details can be 

gleaned from previous work [3]. In this way, the domain integral is transformed into a matrix that corresponds to 

the inertia property of the system:  

 [𝑯]{𝒖} − [𝑮]{𝒒} = [𝑯𝜳 − 𝑮𝜼]{𝜶} = [𝑯𝜳 − 𝑮𝜼]𝑭−𝟏{𝒖} =
𝜔2

𝑘2
[𝑴]{𝒖} (6) 

4  Direct Interpolation Technique 

The Direct Interpolation (DIBEM) technique is conceptually similar to the Dual Reciprocity (DRBEM); 

however, the domain actions are accompanied by the fundamental solution, which depend on the source point. 

For this reason, the classical DIBEM presents singularity problems in the fundamental solution [7] and, as a 

strategy, it can be solved using the regularization procedure [12]. 

Recently, concerning Helmholtz problems solved by frequency scanning, a new strategy has been 

developed to deal with the aforementioned problem and thus avoid singularity, a new strategy has been 

developed to deal with the aforementioned problem and thus avoid singularity. This new strategy, so that the 

usual mathematical operations of the Boundary Element Method (BEM) are maintained, makes use of an 

auxiliary function 𝑏∗(𝝃; 𝑿), as indicated in Eq. (7): 

 b∗(𝝃; 𝑿) = 𝑢∗(𝝃; 𝑿) −
𝜔2

𝑘2
𝐺∗(𝝃; 𝑿) (7) 

The auxiliary function 𝑏∗(𝝃; 𝑿) is composed of two functions: the fundamental solution related to the 

Poisson problem added to the function 𝐺∗(𝝃; 𝑿), which is the Galerkin Tensor associated to 𝑢∗(𝝃; 𝑿), that is, its 

primitive [2]. By substituting Eq. (7) into the Hemholtz equation (see Eq. (1)) and, integrating it over the entire 

physical domain of the problem, the regularized integral of DIBEM can be written as: 

 
𝑐(𝝃)𝑢(𝝃) + ∫ [𝑢(𝑿)𝑞∗(𝝃; 𝑿) − 𝑞(𝑿)𝑢∗(𝝃; 𝑿)]𝑑Γ +

Γ

𝜔2

𝑘2 ∫ 𝑢,𝑖 (𝑿)𝜂𝑖(𝑿)𝐺∗(𝝃; 𝑿)𝑑Γ −
Γ

𝜔2

𝑘2 ∫ 𝑢(𝑿)𝐺,𝑖
∗ (𝝃; 𝑿)𝜂𝑖(𝑿)𝑑Γ = − (

𝜔2

𝑘2)
2

∫ 𝑢(𝑿)𝐺∗(𝝃; 𝑿)𝑑Ω
ΩΓ

  
(8) 

In this way, the entire kernel of the domain integral is interpolated, as expressed in Eq. (9): 

 𝑢(𝑋)𝐺∗(𝝃; 𝑿) ≅ 𝛼𝑖𝐹𝑖(𝑿𝒊; 𝑿) (9) 

Similar to DRBEM, the DIBEM also uses an interpolation function 𝛹𝑖(𝑿𝒊; 𝑿), primitive of 𝐹𝑖(𝑿𝒊; 𝑿). It is 
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interesting to note at this point that the same Radial Basis Function (RBF) used in the DRBEM is retained (i.e., 

the thin plate radial function). After applying this procedure, it is possible to write the domain integral of the 

inertia term, given by the right-hand side of Eq. (8), solely in terms of an integral involving boundary variables: 

 
∫ 𝑢(𝑿)𝐺∗(𝝃; 𝑿)𝑑𝛺 = ∫ [𝛼𝑖𝛹,𝑗𝑗

𝑖 (𝑿𝒊; 𝑿)]
𝛺

𝑑𝛺 = ∫ [𝛼𝑖𝛹,𝑗
𝑖 (𝑿𝒊; 𝑿)𝜂𝑖(𝑿)]

𝛤
𝑑𝛤 =

𝛺

𝛼𝑖 ∫ 𝜂𝑖(𝑿𝒊; 𝑿)
𝛤

𝑑𝛤  
(10) 

Due to space issues, the matrix treatment of this equation will also not be discussed, however, it resembles 

and can be gleaned from previous work [7, 13]. Therefore, the final system can be written as follows: 

 [𝑯]{𝒖} − [𝑮]{𝒒} −
𝜔2

𝑘2
[𝑾]{𝒖} +

𝜔2

𝑘2
[𝑺]{𝒒} = − (

𝜔2

𝑘2
)

2

[𝑴]{𝒖} (11) 

In Eq. (12), the matrices [𝑯] and [𝑮] are matrices arising from the integrals to the normal derivative of the 

fundamental solution and to the fundamental solution, respectively. The matrices [𝑾] and [𝑺] are respectively 

the matrices arising from the integration of the directional spatial derivative of the Galerkin Tensor and of the 

Galerkin Tensor itself. The matrix [𝑴] corresponds to the inertia property of the system; and {𝒖} and {𝒒} are the 

vectors for the potential and its derivative. 

5  Numerical Simulation: Clamped Sheet 

In this section results involving the Helmholtz equation are presented and discussed to demonstrate the 

performance of the DIBEM, when compared to the solution of the DRBEM. The performance of the numerical 

solutions was evaluated by means of the Relative Percentage Error (RPE%) curve for each method, using the 

analytical solution as well as the available meshes (see Tab.1). 

 RPE% = ∑ (|𝑢𝑎 − 𝑢𝑛|𝑖

100

𝑛|𝑚𝑎𝑛𝑡|
)

𝑛

𝑖=1
 (12) 

For the calculation of (RPE%), in Eq. (12), the terms 𝑢𝑎 and 𝑢𝑛 represent the values of the analytical 

potential and the calculated numerical potential at point 𝑖 respectively; 𝑛 corresponds to the number of degrees 

of freedom or calculated potentials; and 𝑚𝑎𝑛𝑡 is the largest analytical value obtained during the example scans. 

Therefore, this analysis consists in solving a problem that has a physical domain 𝛺(𝑿), represented by a 

square with side 𝐿 = 1.0 (unit of length), subjected to essential and natural boundary conditions along its edges. 

It should be noted that since this is an example of a crimped elastic bar, the numerical potentials referring to this 

edge (i.e., crimped edge) are not accounted for. Fig. 1 illustrates the physical domain and the boundary 

conditions imposed for this example, as well as the geometric characteristics and the location of the adopted 

coordinate system. It can be seen that, in this case, the problem becomes one-dimensional when analyzed in 

Cartesian coordinates. 

 

Figure 1. Clamped sheet and boundary conditions. 

The value of the physical property 𝑘 is considered unitary. Thus, keeping the imposed boundary conditions, 
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Fig. 1, the analytical solution, in terms of the potential magnitude 𝑢(𝑥1), is given in accordance with Eq. (13): 

 𝑢(𝑥1) =  sin(𝜔𝑥1) cos(𝜔)⁄   (13) 

It is noteworthy that in the sweep procedure, resonance values are avoided, but certain excitation 

frequencies are close and thereby produce error peaks in the response curve. The excitation frequencies ω used 

for the numerical simulations were varied from 1.00 to 20.00 in a range of 0.50. In Tab. 1, the composite 

meshes with linear elements for the DIBEM and DRBEM techniques are shown. 

Table 1. Quantidade de pontos nodais da simulação numérica 

Nomenclature 
Number of Points on the 

Boundary 

Number of Internal 

Points 
Total Number of Points 

Mesh 1 

84 

64 148 

Mesh 2 144 228 

Mesh 3 256 340 

Mesh 4 

164 

144 308 

Mesh 5 256 420 

Mesh 6 484 648 

 

Initially, in Fig. 2, the DRBEM response curves are presented for meshes with 84 and 164 elements in the 

boundary, respectively, and varying the internal point cloud. 

 

 

 

Figure 2. Comparison between RPE% curves of DRBEM for a mesh of 84 and 164 elements and different 

numbers of poles. 

As expected, the refinement of the mesh of elements in the boundary (i.e., from 84 to 164 elements) 

significantly improves the quality of the results for a wider range of excitation frequencies, since these elements 

directly reflect in the construction of all BEM matrices. However, the introduction of a large number of internal 

points also produces a significant improvement in the results for higher frequencies, this is because the inertia 
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properties must be well constituted to represent the dynamic behavior considering the higher vibration modes. It 

is worth noting that, excess poles, can produce inaccuracies and even divergence in the results, becoming a 

problem of poor matrix conditioning [7]. On the other hand, DIBEM is a technique more sensitive to the 

introduction of internal points and, therefore, the meshes necessarily need a larger number of these poles. This 

fact became even more relevant because the results obtained in numerical simulations, independent of the 

meshes used, are extremely superior to those obtained through DRBEM, as shown in Fig. 3. 

 

 

 

Figure 3. Comparison between RPE% curves of DIBEM for a mesh of 84 and 164 elements and different 

numbers of poles. 

According to the simulations presented for DIBEM, a great superiority is observed in the precision of the 

results compared to DRBEM. The errors dropped significantly with the refinement of the mesh of elements in 

the boundary, because the mesh with 164 elements, obtained a better performance when compared with the mesh 

of 84 elements. As expected, meshing with large numbers of poles, one notices a significant improvement in the 

quality of the results, with a gradual drop in the trend line of the RPE% for the higher frequencies. As already 

mentioned, to have good accuracy in DIBEM it is necessary to have a balance between the number of points on 

the boundary and the number and distribution of internal points. 

6  Conclusions  

For many years, the DRBEM technique was the simplest alternative to overcome the mathematical 

difficulties that arise in applying the Boundary Element Method in problems where the operators that 

characterize the governing equation are not self-adjoint. However, the DIBEM has shown superior performance, 

robustness, and versatility for solving many scalar field cases, including the problems governed by the 

Helmholtz Equation. 

The example solved here has regular geometry and an analytical solution available for better evaluation of 

the precision and convergence of the results for both techniques. It is worth mentioning that because it is a sweep 

of excitation frequencies, the possibility of response peaks in the results is expected. This is because the 
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proximity between the natural frequency and the excitation frequency generates the phenomenon of acoustic 

resonance. In resonance detection, the DIBEM technique appeared to have greater sensitivity than DRBEM since 

it showed higher error peaks in numerical simulations. 

The DRBEM results were not good in this example, even for low pacing rates. There was a gradual 

increase in the Relative Percentage (RPE%) for the high-frequency spectrum, as expected since the graphic 

representation of the response in terms of high frequencies implies more and more refined discretization so that 

the quality of the results is maintained. Ratifying the above, the RPE% curves show that the results of DIBEM 

are extremely superior to those of DRBEM, both with the refinement of the mesh of elements on the boundary 

and with the introduction of internal interpolating points. 

In general, and as already mentioned, the DIBEM technique is similar to the DRBEM technique, but the 

basic idea of the DIBEM is to interpolate the entire kernel of the domain integral term, which includes the 

fundamental solution and, consequently, a larger number of internal points is critical to improving performance, 

compared to DRBEM. Importantly, meshes with few elements in the boundary and many internal points can 

generate poorly conditioned responses due to integration problems, which demands the implementation of 

adaptive integration procedures to avoid numerical errors.  

Regarding the behavior of the DIBEM when adjusted with the auxiliary function 𝑏∗(𝝃; 𝑿), definitely 

eliminating the need for the execution of the regularization procedure, it returned coherent results in terms of 

accuracy, in the range of excitation frequencies analyzed.  

Finally, given the parameters analyzed, in future work, it may be proposed to extend the DIBEM 

formulation to dynamic problems, that is, cases in which the response advances in time, in addition to 

performing mathematical modeling for other types of problems, for example, elasticity problems. 
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