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Abstract. In this work we present a numerical formulation for solving a mathematical model, derived from larvae-
algae-mussel interactions in aquatic environments, proposed in [1]. The model is composed of three unsteady and
nonlinear advective-diffusive-reactive equations for species densities coupled with the Navier-Stokes equations to
simulate the velocity field of the water. We employ the operator splitting technique in the finite element method
context for solving the transport problem in two stages: first, given the velocity field, we solve the advective-
diffusive problem to obtain the densities of larvae, algae and mussels; then, we use this first step approximation as
initial condition for solving the system of ordinary differential equations for the reactions terms. In the first stage,
the nonlinear stabilized finite element method CAU and the two-step Backward Differentiation Formula of second
order are employed in the spatial and time discretizations. The nonlinear process is solved by a Picard fixed point
iteration. In the second stage, the system of ordinary differential equations for reactions is approximated by the
fourth-order Runge-Kutta scheme. The numerical formulation proposed is used to simulate the 3D dynamics of
species proliferation and quantify the golden mussel population in a stretch of the Pereira Barreto channel, located
in Brazil, with a focus on population control actions. The preliminary results as well as other considerations related
to the problem and the numerical model are discussed.

Keywords: golden mussel, larvae-algae-mussel model, Navier-Stokes equations, numerical methods, nonlinear
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1 Introduction

The presence of the invasive species Limnoperna fortunei, known as golden mussel, in rivers and reservoirs
can result in several impacts on the environment and economic activities [2]. In Brazil, this mollusk is particu-
larly common in hydroelectric power plant reservoirs. In these areas, the animals can block the grids, pipes and
heat exchangers, a particularly favored spot where the temperature contributes to the reproduction and growth of
the bivalve. To deal with the problem, a larvae-algae-mussel interactions two-dimensional model in aquatic en-
vironments was proposed in [1]. In this work we present the three-dimensional model to illustrate the population
dynamics of mussels, where we consider the densities of the adult mussels, mussel larvae, and algae which is its
main source of food, in a stretch of the Pereira Barreto channel, located in Brazil, with a focus on population
control actions. The channel was elected as the study area because is an artificially constructed channel which
connects the reservoirs of two main hydroelectric power plants of the Complexo de Urubupungá (Brazil) to max-
imize energy production: the Ilha Solteira and the Três Irmãos HPPs. Both power plants suffer greatly with the
golden mussel infestation and the channel itself is entirely occupied by these species. The extension of the model
to the three-dimensional version is challenging since a new numerical treatment is necessary to avoid oscillations
and deal with the computational complexity. Then a numerical formulation for solving the mathematical model is
presented. As the model is composed of three unsteady and nonlinear advective-diffusive-reactive equations for
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species densities coupled with the Navier-Stokes equations to simulate the velocity field of the water, we employ
the operator splitting technique [3] in the finite element method context for solving the transport problem in two
steps. The first step stands for given the velocity field. We solve the advective-diffusive problem to obtain the
densities of larvae, algae and mussels; then, we use this first step approximation as initial condition for solving the
system of ordinary differential equations - ODE for the reactions terms. In the firs step, the nonlinear stabilized fi-
nite element method SUPG - Streamline Upwind Petrov–Galerkin [4] plus CAU - Consistent Approximate Upwind
[5] and the BDF2 - two-step Backward Differentiation Formula of second order [6] are employed in the spatial
and time discretizations. The nonlinear process is solved by a Picard fixed point iteration [7]. In the second step,
the system of ODEs for reactions is approximated by the fourth-order Runge-Kutta scheme [7], as will be seen
in the next section. The numerical simulation associated with a local verification of environmental information
and biological variables can be used to provide a more complete and clear view of the ecological and hydrological
dynamics of the studied environment, as well as provide crucial information for the infestation management by
HPP operators of the region. Thus, the results can serving as an additional tool for environmental agencies and
operators to manage the golden mussel in Pereira Barreto channel.

2 Mathematical model

The larvae-mussel-algae model consists of finding L = L(x, t), M = M(x, t) and A = A(x, t), the
densities of larvae, mussels and algae, respectively, such that

∂L

∂t
−DL∆L+ u ·∇L = RL(L,M,A), in Ω× [0, tF ], (1)

∂M

∂t
−DM∆M = RM (L,M,A), in ΩM × [0, tF ], (2)

∂A

∂t
−DA∆A+ u ·∇A = RA(L,M,A), in Ω× [0, tF ], (3)

where Ω ⊂ R3 is an open and bounded domain with a Lipschitz boundary Γ, [0, tF ] is the temporal interval, with
tF > 0, ΩM ⊂ Ω is the spatial domain for the mussels, representing a layer close to the boundary walls (solid
substrates and side walls), and

RL(L,M,A) = r1M

(
1− L

KL

)
− (b1 + λL)L, (4)

RM (L,M,A) = λML

(
A2

c21 +A2

)(
1− M

KM

)
− b2M, (5)

RA(L,M,A) = r2A
(
1− A

KA

)
− b3

(
A2

c22 +A2

)
M (6)

are the reactive terms.

The first part of the dynamics corresponding to larvae variation, Eqs. (1) and (4), admits that the growth of
larvae is related to adult mussel population, due to external reproduction as indicated by Cataldo & Boltovskoy [8].
Besides, the logistical growth function [9] that depends on an intrinsic growth rate of the larvae population r1 and
the carrying capacity for the larvae population, KL, which is the limit of individuals of a particular species (density)
that the environment can sustain due to limiting factors [10]. In addition, the losses of larvae are understood as
mortality in a rate of b1, and the maturation, which represents the larvae that successfully turns into adult golden
mussel in a rate of λM . Finally, to model the spatial propagation in a certain domain, a diffusion parcel and an
advection term due to the suspension of larvae in the water column [8] were considered, being u the velocity field
and DL the diffusion coefficient of larvae. For the second part (adult mussels), Eqs. (2) and (5) of the model, it
is admitted that mussel growth depends on the larvae maturation and algae availability, since the seaweed algae
is the golden mussel’s main source of food as some studies indicated [11]. Accordingly, the model associates
mussel population growth directly with mature larvae and a function related to algae predation. The equation also
highlights the logistical growth rate [12, 13], being KM the carrying capacity for the golden mussel, c1 the half
saturation constant for the adults, and b2 the mortality rate due to fish predation. Furthermore, a diffusion term is
considered, admitting DM as a measure of mussel motility caused by their pedal locomotion mechanism and its
concomitant byssal thread deployment [14]. For the algae variation, Eqs. (3) and (6), this can be directly modelled
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assuming an r2 growth rate and the logistical growth limited by a carrying capacity for algae, KA. Besides, the
terms of diffusion and advection were considered, with DA being the diffusion coefficient of algae and b3 its
mortality due to predation by golden mussels. For more details of this model see [1].

Dirichlet boundary conditions for larvae and algae are imposed on the inflow of the channel, whereas ho-
mogeneous Neumann boundary condition are imposed in the remaining part of the boundary. The homogeneous
Neumann boundary condition means that there is no population movement of larvae and algae across the boundary.
To simplify the computational implementation, we consider M = 0 in Ω\ΩM . The mathematical model (1)-(3) is
completed by assuming the initial conditions,

L(x, 0) = L0(x), M(x, 0) = M0(x), A(x, 0) = A0(x), (7)

where L0,M0, A0 are given non-negative functions representing the initial densities of larvae, mussels and algae,
respectively. The velocity field u in the advective terms of (1) and (3) is obtained from the unsteady incompressible
Navier-Stokes equations [15].

3 Numerical formulation

The model (1)- (3) is a unsteady and nonlinear system of advective-diffusive-reactive equations coupled
through reactive terms. The free divergence velocity field, u, which appears in the larvae and algae equations,
is obtained from the unsteady incompressible Navier-Stokes equations. To solve the system of three transport
equations, we use operator splitting technique, presented in [3, 16]. This numerical scheme consists of solving the
advection and diffusion terms separately from the reaction terms. This decomposition of operators is computation-
ally efficient in solving advective-diffusive-reactive transport problems with complex reactive terms, especially in
the common case when the timescale of reactive processes is much smaller than the timescale of advective/diffusive
processes [16].

Thus, the approximate solution of (1)-(3), with suitable initial and boundary conditions, is obtained in two
stages, which can be solved with different time steps. In the first stage the system of homogeneous advection-
diffusion equations, given by (8)- (10), is solved by the finite element method in space, coupled with the nonlinear
stabilized method, Consistent Approximate Upwind (CAU) [17], and by the two-step Backward Differentiation
Formula (BDF2) in time. The resulting system of nonlinear equations is solved by a Picard fixed point iteration.
In the second stage the system of ODE’s for the nonlinear reactions terms, Eqs. (11)-(13), is solved by the the
fourth-order Runge-Kutta scheme. These stages are shown as follow.

Stage 01: solve the system of advective-diffusive equations:

∂L

∂t
−DL∆L+ u ·∇L = 0, (8)

∂M

∂t
−DM∆M = 0, (9)

∂A

∂t
−DA∆A+ u ·∇A = 0. (10)

Stage 02: solve the ODE’s system of reactive equations:

∂L

∂t
= RL(L,M,A), (11)

∂M

∂t
= RM (L,M,A), (12)

∂A

∂t
= RA(L,M,A). (13)

The intermediate solution obtained in each time step, ∆t, in the first stage, is used as initial condition for the
reaction equations in the second stage, also calculated in ∆t using a much more refined time step, ∆tR = ∆t/NR,
where NR is the number of small time steps for the Runge-Kutta scheme in each ∆t. The numerical formulation
for the Navier-Stokes model is based on the Characteristic Galerkin method [18].

4 Numerical experiments

In this section we present the numerical experiments in order to evaluate the quality of the obtained solutions,
comparing it to the densities observed in the field. Recent in situ measurements were carried out in December 2020
and August 2021, obtaining a mussel density of 3, 936 gm−3 and 7, 546 gm−3, respectively.
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We used the FreeFEM++ software [19] to generate the mesh and to solve the transient incompressible Navier-
Stokes equations to obtain the velocity field. A code in MATLAB© platform [20] was developed to solve the system
of partial differential equations, given in Eqs. (1)-(3). The 3D domain Ω represents a stretch of the Pereira Barreto
channel, corresponding to one third of its total length, that is 3, 200m long, close to the Três Irmãos HPP reservoir,
located in the Tietê river basin, next to the municipalities of Pereira Barreto (SP) and Andradina (SP).

We considered a period of time of 4 months to evaluate the beginning of the golden mussel infestation. The
following initial values were used for the populations: L(x, 0) = 0.0194115 gl−1, M(x, 0) = 1 gm−3 and
A(x, 0) = 0.001 gl−1. The parameters used in the simulations are described in Table 1.

Table 1. Parameters used in the numerical simulations.

Parameter Value Unit Reference

DA 1.2 m2day−1 [14]
DM 0.0012 m2day−1 [21]
DL 0.012 m2day−1 [12]
b1 0.015 day−1 inferred

b2, b3 0.02 day−1 inferred
λM , λL 0.03 day−1 inferred

r1 0.07 day−1 inferred
r2 0.12 day−1 inferred
KL 20 gl−1 inferred
KM 1, 732 gm−3 inferred
KA 0.01 gl−1 inferred
c1, c2 0.001 gl−1 inferred

The domain was discretized with 11,184 tetrahedral elements and 50,970 nodes, conforming mesh shown in
Figure 1.

Figure 1. Discretization of the spatial domain.

Figure 2 shows the velocity field. We use as initial condition for the Navier-Stokes equations, u(x, 0) = 0,
in Ω. Also, a Dirichlet boundary condition on the channel inlet, for the velocity field, is given by u = 0.13ms−1.

In the fist time step the time derivatives of the advective-diffusive equations are discretized by the Backward
Euler (BDF1) method, since the BDF2 is a two-step scheme. Moreover, in each time step the algorithm performed
smax = 20 nonlinear iterations, using a Picard fixed point scheme.

The results for the densities of larvae, mussels and algae, in the period of 4 months, are shown in Figures
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Figure 2. Velocity field obtained from incompressible transient Navier-Stokes equations.

3, 4 and 5, respectively. The larvae population at the inflow boundary is carried across the domain, due to the
velocity field. In some regions far from the water flow and near the lateral boundary there is an increase in the
larvae density. The mussel population, concentrated on the lateral boundary of the domain, grows as expected. The
algae population is homogeneous throughout the domain with lower density near the lateral boundaries, where the
mussels reside.

Figure 3. Densities of Larvae after 4 months of infestation.

5 Conclusions

We presented a numerical formulation, based on the finite element method in space and finite difference
schemes in time, for solving a complex 3D system of transient and nonlinear transport PDEs arising from larvae,
algae and mussel interactions. The operator splitting technique was employed for solving the problem in two
stages: first, the advective-diffusive transport problems are solved, using the nonlinear stabilized finite element
method, CAU, in space and the BDF2 scheme in time. Then, this first step approximation is used as initial condition
for solving the system of ordinary differential equations for the reactions terms, using the fourth-order Runge-Kutta
scheme.
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Figure 4. Densities of Mussels after 4 months of infestation.

Figure 5. Densities of Algae after 4 months of infestation.

The population dynamics of larvae, mussels and algae were evaluated in a short period of time of only 4
months. These preliminary results indicate that the model represents well the interaction between the populations
in this initial period of infestation. The increase in mussel density corroborates the proposition that the Pereira
Barreto channel has been serving as a nursery for the species, and that the infestation of the reservoir at Ilha
Solteira HPP is mainly due to the arrival of larvae from the Três Irmãos HPP (already heavily infested), which
through the channel, reach the São José dos Dourados river and then the Ilha Solteira HPP, thus forming a route
for mussel infestation in the region.

A more complex computer simulation is being implemented, evaluating a longer period of time, using more
refined meshes and a more extensive spatial domain. This will allow more accurate comparisons between the
numerical solutions and in situ data, as well the evaluation of the convergence of the numerical process. Further-
more, the numerical experiments indicate that the two-stage division scheme can lead to a considerable reduction
in computational time.
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