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Abstract. Guyed structural systems are present in several engineering applications, and as a large portion of these 
structures have a high level of slenderness, their designs are based on stability criteria. The set of cables present in 
these elements are characterized by high efficiency when they are tensioned. The main objective of this study is 
to analyze the static and dynamic nonlinear behavior of a discrete guyed tower model with two degrees of freedom. 
Furthermore, the present work devotes special attention to the consideration of the unilateral contact (boundary 
condition) in the nonlinear oscillations of this structure. The unilateral contact is manifested in this type of 
application from the consideration of the capacity of the stays to resist only the traction efforts, as an effect, this 
approach strongly modifies the analysis of the proposed structural system. For this model, there is a significant 
influence of the consideration of unilateral contact on the post-critical behavior, with a marked decrease in the 
critical load of the structure. Thus, the results show that this type of structure is highly sensitive to geometric 
nonlinearities and to the restriction of certain stays, indicating that these effects must be considered in the tower 
design phase. 
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1  Introduction 

The improvement of construction techniques, associated with the use of new materials and the development 
of new technologies, has resulted in projects of increasingly slender, light and flexible structures. Guyed structural 
systems contain these aspects and are widely used in many engineering applications. As the structural elements 
are designed with greater slenderness, the structure becomes more susceptible to lateral deflections. Thus, as 
evidenced by Del Prado et al. [1], geometric nonlinearities are associated with their static and dynamic behavior. 
Carvalho [2] reports that the efficiency of cable-stayed structures to support axial loads is due to the presence of 
cable elements, which present high efficiency when subjected to traction, fully meeting the architectural and 
structural concepts required.  

Marques et. al [3] investigate the influence of cable configuration on the static and dynamic stability of guyed 
towers through a nonlinear finite element model. The results show that guyed towers have a highly non-linear 
response, even at low load levels. In addition, the uniform distribution of cables can give rise to coincident buckling 
loads and vibration frequencies. 

Given the importance of cable analysis, Sequeira et. al [4] report that many accidents occur in guyed towers 
due to cable rupture. Thus, the authors investigate the sudden rupture of one or two cables, arbitrarily selected, in 
the linear and non-linear response of the guyed tower under static and dynamic loads of a tower model studied via 
finite elements. The results show that this type of structure is sensitive to physical and geometric nonlinearities 
and to rupture, indicating that these should be considered in the design of the tower structure. This research shows 
that cable failure produces a reduction in buckling load and vibration. 
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According to Barbosa [5], some structures may be in unilateral contact, which are boundary conditions that 
resist the displacements of bodies only in certain directions or prevent such displacements. In this context, it can 
be said that guyed towers are a class of structures in which the consideration of the hypothesis of unilateral contact 
of the cables - which resist the displacements of the tower if tensioned - must be considered to obtain a more 
accurate mathematical model.  

In this sense, this work intends to investigate the unilateral contact (boundary condition) in the non-linear 
oscillations of guyed towers. The unilateral contact is manifested in this type of application from the consideration 
of the capacity of the structure cables resist only the traction forces, which strongly modifies the static and dynamic 
analysis of the proposed structural system. From this contextualization, the analysis of stability and non-linear 
vibrations of guyed towers is carried out, considering the unilateral contact of cables in the equivalent mathematical 
model. 

2  Mathematical formulation 

The plan tower discrete model studied consists of a central mast comprising two labeled rigid bars. The lower 
bar of length ℎଵ has a rotational spring at its lower end, and a spring at the upper end that connects it to a 
consecutive rigid bar of length ℎଶ. The lateral displacements are restricted by translational linear springs 
corresponding to the cables, responsible for ensuring the stability of the structure. These springs with stiffness 
coefficients 𝑘ଵ, 𝑘ଶ, 𝑘ଷ and 𝑘ସ are fixed at anchor points arranged at a distance L from the tower and at the ends of 
each rigid bar.  

The tower is subjected to three loads, being an axial load P, applied at its end, and axial loads 𝑝ଵ and 𝑝ଶ, 
corresponding to the self-weight of the bars of length ℎଵ and ℎଶ, respectively. The system has two rotational 
degrees of freedom denoted by 𝜃ଵ and 𝜃ଶ, angles that represent the rotations associated with rotational springs 
with stiffness coefficients 𝑘ఏଵ and 𝑘ఏଶ, respectively. Therefore, each bar has a unique degree of mobility, and the 
structure is characterized by the series of these two variables that uniquely determine its position. In Fig. 1(a), the 
tower is shown in the fundamental equilibrium configuration, and in Fig. 1(b), the deformed configuration of the 
structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) initial configuration (b) deformed configuration 

Figure 1. Geometric model in (a) initial and (b) deformed configuration. 

The study of stability based on the energy criterion relates the internal energy of deformation and the work 
done by the external forces of the structure. The variation of the spring length, 𝛥𝑙୧, is expressed by the sum of an 
initial elongation 𝛥𝑙଴, caused by the prestressing force acting on the cables, plus the elongation 𝛥𝑙௉, as a function 
of the rotations of the bars when they undergo the action of external stresses. Then 𝛥𝑙୧ is written in the form: 

𝛥𝑙௜ = (∆𝑙଴)௜ + (∆𝑙௉)௜ , (1) 

where the elongation due to the prestressing of the stays is given by: 

(∆𝑙଴)௜ = −(𝐹଴)௜  / 𝑘௜ . (2) 



F. N. Silva, F. M. A. Silva  

CILAMCE-2022 
Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu, Brazil, November 21-25, 2022 
 

It is noteworthy that the angles 𝜃ଵ and 𝜃ଶ are considered positive in the direction of rotation indicated by Fig. 
1(b). The expressions of ∆𝑙௉  when calculating the variation between the final and initial lengths of the four 
analyzed springs, considering the proposed rotation direction, are given by: 

𝛥𝑙௣భ
= ටℎଵ

ଶ + 2 𝐿 ℎଵ 𝑠𝑖𝑛 𝜃ଵ + 𝐿ଶ − ටℎଵ
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(3) 

The internal deformation energy of the system considers the contributions of the energy referring to each 
translational spring, and the related rotational springs. The work of external loads considers the effects of loads 𝑃, 
𝑝ଵ and 𝑝ଶ applied to the structure. So, the sum of these energies results in the variation of the total potential energy: 
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(4) 

where the parameter 𝐹𝑆௜ represents the Signum function, responsible for introducing in this formulation the 
consideration of unilateral contact. This function is a mathematical consideration that extracts the sign of a real or 
complex number and, when applied to the terms of the internal deformation energy referring to the cables, fulfills 
the objective of disregarding such elements subjected to compression. In this context, to perform an analysis that 
meets the unilateral contact, 𝐹𝑆௜ must assume the following expressions: 

𝐹𝑆୧ = ቆ
𝑠𝑖𝑔𝑛𝑢𝑚 𝛥𝑙௣೔

2
+

1

2
ቇ , 𝑖 = 1, 2, 3, 4. (5) 

However, for an analysis that does not consider this restriction promoted by unilateral contact, that is, the 
effects of all cables will be accounted for in the study of the behavior of the structural system (bilateral contact), 
𝐹𝑆௜ must assume a unit value. 

The system of nonlinear equilibrium equations of the post-critical path is obtained by deriving the expression 
of the total potential energy, indicated by Eq. (4), as a function of the generalized coordinates, 𝜃ଵ and 𝜃ଶ: 
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(6) 

The equilibrium path of the system, after passing to the post-critical path, is determined using the standard 
Newton-Raphson method. At the end of the following iterations, there is a series of values for P, 𝜃ଵ and 𝜃ଶ that 
configure the non-linear equilibrium trajectory, thus allowing the visualization of the different post-critical paths 
when plotting those points. 

The equation of motion can be determined from the Lagrangian approach, which involves the kinetic energy 
𝑇 and the total potential energy 𝛱. Obtaining the kinetic energy, that comprises two rigid bars with the density of 
the material, ρ, and that the cross-sectional area, 𝐴, the equations of motion have associated dynamic properties 
and are given by: 
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ଷ
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ଷ
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The second order differential equations set, Eq. (7), are transformed into systems of first order differential 
equations of motion. Then these systems are integrated in time using the 4-th Runge-Kutta method. It is important 
to notice that from the set of first order differential equations of motion, a Jacobian matrix can be obtained. The 
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classification of equilibrium points is determined by the eigenvalues 𝜆ଵ, 𝜆ଶ, 𝜆ଷ and 𝜆ସ of the Jacobian matrix. 
Ricardo [6] approaches the classification of the stability of fixed points from the numerical characteristic of 𝜆௜. 
According to the author, if all the eigenvalues have the real parts equal to zero, and the imaginary parts are not 
zero, there is a stable center. If all the reals are negative, the point is stable, if at least one eigenvalue has a positive 
real part, it is classified as unstable. A node and a focus are different equilibrium points where the first one all 
imaginaries must be null while the focus has its imaginary part not null. The saddle is characterized by having real 
eigenvalues with opposite signs. 

3  Numerical results 

To obtain the static numerical results, the following values corresponding to the parameters involving the 
were considered: ℎଵ = ℎଶ = 3.5 𝑚, 𝐻 = 7 𝑚, 𝐿 = 4 𝑚, 𝑝ଵ = 𝑝ଶ = 0.14 𝑁, 𝑘 = 1 𝑁 𝑚⁄ , 𝐹଴ = 0.01 𝑁, 𝑘ఏଵ =

1 𝑁 𝑟𝑎𝑑⁄  and 𝑘ఏଶ = 0.5 𝑁 𝑟𝑎𝑑⁄ . 
Figure 2 shows the nonlinear equilibrium path of the structural system under bilateral contact, projected in 

the two orthogonal planes, 𝑃 × 𝜃ଵ and 𝑃 × 𝜃ଶ. The continuous lines correspond to the stable equilibrium 
configurations and the dashed lines to the unstable configuration. 

  
(a) in the P × 𝜃ଵ plane (b) in the P × 𝜃ଶ plane 

Figure 2. Post-critical path of the discrete model that considers bilateral contact (a) in the P × 𝜃ଵ 
plane (b) in the plane P × 𝜃ଶ. 

As the compressive load increases, a stable nonlinear path with increasing effective stiffness up to the first 
maximum limit point (𝑃௟௜௠ = 4,74 N) is observed. The limit point is followed by a significant decrease in stiffness 
to a minimum point, and from there, the stiffness increases again. Thus, it appears that the post-critical path is 
comprised of two paths in which the symmetric bifurcation is stable, the interval of the first path is given by 0° <

𝜃ଵ < 13.9° and 0° < 𝜃ଶ < 97.4°, and the other section is stable at 2.4° < 𝜃ଵ < 6.4° and 163.8° < 𝜃ଶ < 180°. 
The corresponding symmetrical intervals, which have the same negative angulations, are also stable. 

The post-critical paths shown in Fig. 3 are obtained by considering unilateral contact for these same study 
parameters. Analogously to the post-critical path obtained for the bilateral contact, it is noted that the nonlinear 
equilibrium paths along the displacements are symmetrical. However, in this case there is no presence of critical 
bifurcation load, therefore, there is no fundamental path of equilibrium. In the absence of a critical load, the limit 
point load (𝑃௟௜௠ = 0.60 𝑁), associated with rotations 𝜃ଵ and 𝜃ଶ very close to zero, is analyzed. It is noteworthy 
that 𝑃௟௜௠ is lower than the critical load obtained in the analysis of the system with bilateral contact, given by 𝑃௖௥ =

1.28 N. Therefore, when considering the unilateral contact for this same case, it appears that there is a considerable 
loss of rigidity of the structural system. A stable path with increasing effective stiffness is observed for small 
rotations, until the system reaches the point of 𝑃௟௜௠ . It is verified that the trajectory are stable in the path composed 
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by the intervals of 0.35° < 𝜃ଵ < 1.35° and 1.14° < 𝜃ଶ < 4.01°, and in the other path varying between −3.43° <

𝜃ଵ < 31.03° and 74.48° < 𝜃ଶ < 158.14°. When comparing the trajectories presented for the two forms of contact 
shown by Figs. 2 and 3, it is noticeable that the stable paths do not comprise precisely the same interval in both 
cases, since few stable intervals correspond. For unilateral contact, there is a greater restriction for displacements 
related to 𝜃ଶ compared to the other form of contact. On the other hand, there are larger intervals of stable 𝜃ଵ in the 
case where unilateral contact is considered.  

  
(a) in the  𝑃 ×  𝜃ଵ plane (b) in the 𝑃 ×  𝜃ଶ plane 

Figure 3. Post-critical path of the discrete model that considers unilateral contact (a) in the P × 𝜃ଵ 
plane (b) in the plane P × 𝜃ଶ. 

  
(a) bilateral contact (b) unilateral contact 

Figure 4. Potential energy surface curves considering (a) bilateral contact and (b) unilateral contact. 

A clear understanding of the structure's nonlinear behavior can be observed in the surfaces of the structure's 
total potential energy for chosen load levels. For this analysis, the load parameters 𝑃 = 𝑃௖௥ and 𝑃 = 𝑃௟௜௠were 
adopted to classify all static equilibrium points along the nonlinear equilibrium trajectories referring to the case of 
bilateral and unilateral contact, respectively. Notable points have been indicated in Figs. 2 and 3, as well as in the 
isocurves of the total potential energy of the bilateral and unilateral contact cases, as shown in Fig. 4. Note that the 



Analysis of global stability of guyed towers considering unilateral constraints 

CILAMCE-2022 
Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  
Foz do Iguaçu, Brazil, November 21-25, 2022 

total potential energy curves, that consider the bilateral contact (Fig. 4(a)) have seven configurations of static 
equilibrium: a minimum corresponding to the stable equilibrium position along the fundamental trajectory (SC1 – 
Stable Center 1), two unstable equilibrium positions along the trajectory (UF1 – Unstable Focus 1), and four stable 
equilibrium positions (SC2 and SC3 – Stable Centers 2 and Stable Centers 3). Symmetric points are designated 
with the same nomenclature, as there is no differentiation between their coordinates. On the other hand, for the 
consideration of unilateral contact, Fig. 4(b) shows the existence of six static equilibrium configurations for the 
analyzed load: two centers corresponding to stable equilibrium positions under small displacements (SC1), two 
foci related to unstable equilibrium positions along the trajectory (UF1), and two centers related to stable 
equilibrium positions with large displacements of 𝜃ଶ (SC2). The classification of these points was obtained on the 
analysis of the stability study according to Lyapunov. From Fig. 4, it was observed important changes in the 
topology of the total potential energy due to the nonlinearity inserted by the signum function, leading to a complex 
behavior competition between the potential wells. 

For plan tower discrete model subjected to the harmonic force, the evolution of the time response of the 𝜃ଵ 
and 𝜃ଶ rotation of the tower when subjected to harmonic axial loading in the form 𝑃 = 𝐹ଵ + 𝐹ଶ 𝑐𝑜𝑠(𝛺𝑡) is 
analyzed. 𝐹ଵ and 𝐹ଶ are ratios of critical load, and 𝛺 is equal to the pre-loaded structure's natural frequency, which 
in this case is 𝛺 = 0.258 𝑟𝑎𝑑/𝑠. In addition, were adopted: 𝑐 = 0.01, 𝐴 = 0.1 𝑚ଶ e 𝜌 = 0.01 𝑘𝑔/𝑚³. 

The equations of motion, Eq. (7), are time-integrated for different values of 𝐹ଶ starting from small values of 
𝜃ଵ and 𝜃ଶ. 𝐹ଵ was considered equal to 0.75 𝑃௖௥. Figure 5 shows some time responses and phase portrait for the 
model with bilateral contact hypothesis of guyed cables. It can be seen in Fig. 5(a) the presence of small 
disturbances with the permanent response going to the fundamental solution, that is, after a harmonic load 
perturbation, the amplitude of the response rapidly decreases, converging to the trivial solution. When increasing 
the value of 𝐹ଶ, as seen in Fig. 5(b), the maximum amplitude of the response will increase, experiencing a periodic 
stable orbit inside the potential well with stable centers SC1 and SC2. The permanent response of this system is 
characterized by phase portrait plane of Fig. 5(c). 

Figure 5. Time response and phase plane of the discrete model under bilateral contact according to variation in 
𝐹ଶ. 

Regarding the system that considers unilateral contact of guyed cables, the evolution of the response over 
time was also analyzed by varying the values corresponding to the 𝐹ଶ. In Fig. 6(a) it is evident that, after an initial 
harmonic load perturbation, the response amplitude decreases converging to a periodic stable solution around to 
the potential well around SC1 point. However, when adopting 𝐹ଶ  =  0.25 𝑃௟௜௠, as indicated in Fig. 6(b), large-
amplitude vibrations are observed, and an initial cross-well motion occurs leading the system to oscillate in the 
steady-state around the SC2 potential well. The phase portrait plans corresponding to the solutions obtained in Fig. 
6(a) and Fig. 6(b) are indicated in Fig. 6(c). 

 
 

 
 

  

(a) 𝐹ଶ = 0.22 𝑃௖௥ (b) 𝐹ଶ = 0.25 𝑃௖௥ (c) Phase plane for 𝐹ଶ = 0.25 𝑃௖௥ 
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Figure 6. Time response and phase plane of the discrete model under unilateral contact according to variation in 

𝐹ଶ. 

4  Conclusions 

A mathematical discrete model capable of considering only the cables that are effectively tensioned was 
developed for a plan guyed tower discrete system. The presence of static loads and, mainly, dynamic loads in 
nonlinear structural systems, such as the investigated tower model, are factors that make a meticulous analysis of 
the behavior of these structures necessary. As evidenced in the static and dynamic results, the consideration of 
unilateral contact in the analysis of the stability of the structural system is responsible for strongly changes in the 
nonlinear equilibrium responses, since there is a considerable loss of rigidity of the structural system. In the 
analysis of the non-autonomous system, a relationship between the total potential energy and the phase portrait 
was used, where it is observed that the system initially oscillates around a post-critical equilibrium configuration 
and, when the load amplitude varies starts to oscillate around another potential well equilibrium position. This 
work is under development, evaluating the global nonlinear dynamic behavior from an extensive parametric 
analysis of the harmonic load. 
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