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Abstract. Virtual Element Method (VEM) is a relatively new method for solving partial differential equations,
which proposes to generalize the classical Finite Element Method (FEM) with respect to the mesh discretization.
In the two-dimensional case, any simple polygon can be used as discretization element and, as a result, the shape
function are not strictly polynomials. The method main characteristic is to compute those functions implicitly,
without the necessity of knowing their explicit form, giving it great versatility when treating complex geometries.
The VEM presents a dense mathematical formulation, and it was originally developed for the Poisson equation. In
recent years, a considerable number of works has applied the method for different engineering problems usually
treated using finite element models. For example, VEM formulations were adapted to different rheology problems,
contact problems and topological optimization. However, the usage of the Virtual Element Method is not so popular
when compared to the Finite Element Method or the Extended Finite Element Method. The main goal of this paper
is to present the Virtual Element Method applied to linear elasticity problems in two-dimensions by focusing on
its implementation, aiming to contribute for the popularization of the method. The results obtained with VEM are
compared with the results from a Finite Element Method commercial software, showing good agreement and the
great potential of the method in engineering problems.
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1 Introduction

The Virtual Element Method (VEM) is a relative new numerical method to solve partial differential equations.
It was originally presented in the works Veiga et al. [1] and Veiga et al. [2] by a group of mathematicians. In this
way, it presents a deep mathematical formulation, contemplating topics that are not usual on engineering courses.

This method proposes to generalize the classical Finite Element Method (FEM) in terms of mesh discretiza-
tion. Every simple polygon can be used as discretization element in the VEM. Although, as consequence, the shape
functions are not restricted to low order polynomials. The main idea of the method is to compute these function
implicitly, without necessarily knowing their explicit form. This is done by projecting the function on polynomial
spaces and treating the residue with a stabilization term.

The versatility of the method in terms of meshing, makes it a suitable tool for handling complex geometries.
Also, in the literature, it is attested that the VEM is more robust when compared to the FEM, i.e., using fewer
number of elements yields better results and, thus, lower errors. However, the method still is not very popular for
classical engineering approaches, primarily due to its dense formulation. This paper main objective is to present a
qualitative analysis of the VEM formulation and to present its main characteristics. And, contribute to the method
popularization. Also, the method is applied to classical examples. Here, no deep stability or convergence analysis
is intended, the focus is to illustrate the Virtual Element Method.

2 The Virtual Element Method

In this section, a qualitative overview of the VEM formulation is given. For more details of the mathematical
formulation of the method, one can refer to Veiga et al. [1], Veiga et al. [3], Ortiz-Bernardin et al. [4] and Mengolini
et al. [5]. Originally, the VEM was developed for the Poisson equation in two dimensions but it can be extended
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to solve the linear elasticity differential equations as shown in Veiga et al. [2] and Artioli et al. [6]. The method
formulation is based on the hypothesis presented below.
Hypothesis 1. Considering the geometric domain Ω, let h be the discretization parameter (e.g., polygonal diame-
ter) and let k ≥ 1 be a intenger called order of accuracy. For every simple polygon K in the decomposition Th, it
holds that:

1. Vh ⊂ H1
0 (Ω), where Vh is the virtual element space and H1

0 (Ω) is the closure of the continuous functions
with compact support space C∞

c (Ω) (the sub-index c refers to compact support).
2. a symmetric bilinear form ah : Vh × Vh −→ R and a bilinear form ah,K : Vh,loc × Vh,loc −→ R such that

ah(u, v) =
∑

K∈Th

ah,K(u, v), where Vh,loc is the local virtual element space.

3. a load term fh ∈ V ′
h, where V ′

h is the dual of Vh.
4. Pk(K) ⊂ Vh,loc, where Pk(K) is the polynomial space of degree k in K, P−1(K) = {0},
5. k-consistency: it is true that ah,K(q, v) = aK(q, v), for all q ∈ Pk(K) and for all vh ∈ Vh,loc,
6. stability: exists constants α1, α2 ∈ R+ that are independent of the polygonal diameter h and the polygon K

such that α1aK(v, v) ≤ ah,K(v, v) ≤ α2aK(v, v), for all v ∈ Vh,loc.

With this hypothesis, it is possible to present a general overview of the method pipeline.

• Formulation of the weak problem: as in the Finite Element Method, the starting point to apply the Virtual
Element Method is the weak formulation. To achieve the weak form, a bilinear form and a load term are
defined. Also, the test functions are introduced and the function space is the closure of C∞

c in the Sobolev
space denoted by H1

0 . It is important to mention that the virtual element space Vh is contained in the closure.
In the linear elasticity context, the test functions are called virtual displacement field and the weak form is
called Principle of Virtual Works.

• Discretization of the weak form: the discretization is made by choosing a decomposition Th of simple
polygons. Before determining the discrete bilinear form and the discrete load term, it is required to prove that
the discrete form has solution and define the convergence criteria. Also, stability and consistency hypothesis
are required to be satisfied.

• Construction of the virtual element space: as mentioned before the virtual element space is a subspace
of the closure. In this sense, it is possible to define local virtual element spaces and from then construct the
global space. These spaces are constructed upon the definition of the degrees of freedom. The canonical
choice for the degrees of freedom are the values of the functions in the vertices of each polygon, the values
in each edge of each polygon and the values in the internal points (moments). In the linear case (k = 1),
only the values on the vertices are required. It is important to mention that the choice of degrees of freedom
is the same for both the Poisson equation and for the linear elasticity context. Also, to construct the the local
virtual element space, a linear space EK is necessary. This space is associated to the linear polynomials and
to the behavior of functions in the edges of each polygon.

• Introduction of the projection operator: the projection operator is the responsible to compute the functions
implicitly. The idea is to project functions that are not known in a first moment from the local virtual element
space to a subspace of a polynomial space. In the case of the Poisson equation the projections are made
directly into the polynomial spaces. In the case of linear elasticity context, there are different approaches.
In Veiga et al. [2] and Mengolini et al. [5] the projections are done similarly to the Poisson equation. But
in Artioli et al. [6] the projections are made directly into the strain field. In Gain et al. [7] the projection
operator is divided in three parts, the first term is related to the rigid body motions, the second term is related
to the constant strain modes and the third term is responsible to extract the polynomial elements. It is worth
mentioning the rigid body motions and the constant strain modes are defined as subspaces of polynomial
spaces.

• Construction of the bilinear form: the bilinear form must be constructed in order to satisfy both the
consistency and stability criteria. To ensure stability, a symmetric bilinear term SK is introduced. There are
different ways to define SK that can be verified in [1], Gain et al. [7], Wriggers et al. [8], Veiga et al. [9] and
Artioli et al. [6]. After the choice of the stability term, the bilinear form will have a portion responsible to
handle the polynomial terms and a portion responsible to handle the non-polynomial terms and high degree
polynomials associated to SK . Finally, the bilinear term can be computed directly from the degrees of
freedom.

• Construction of the load term: analogous to the bilinear form, a projection operator is defined and the load
term are computed directly from the degrees of freedom.

• Construction of the stiffness matrix and load term: to build the bilinear form matrix, one should choose
an adequate basis for the virtual element space (e.g. Lagrange polynomials) and an adequate basis for the
polynomial spaces and its subspaces. After the choice is made, by applying the definition of the bilinear
term and the load term within the basis, one should obtain, respectively, the stiffness matrix and the load
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vectors. Then, it is possible to assembly the global problem and solve it as in FEM.

3 Results

In this section some results regarding the application of the Virtual Element Method applied to two-dimensional
linear elasticity are presented. The first application consists on the analysis of the displacement field in a unitary
square plate. The numerical results are compared to the analytical ones. The second example, concerns to the anal-
ysis of the displacement field in a non-convex pentagon. The numerical results are compared with the commercial
software Ansys. The last application is related to the classical problem of a rectangular plate with a hole. For all
the applications, the plane stress state hypothesis is considered.

The Gmsh software was used here (for more details refers to Geuzaine and Remacle [10]) to generate meshes
for the geometries used in this section. For the presented analysis only square and triangle elements are considered.
The used meshes were not regular nor uniform. The Virtual Element Method implementation was mostly inspired
on the works of Gain et al. [7], Sutton [11] and Ortiz-Bernardin et al. [4].

3.1 Unitary square plate

An unitary square plate was considered with movement restricted in the vertical direction in the bottom edge
and in the horizontal direction in left edge. The thickness of the plate is considerably small when compared to
the edges dimensions. Also, a distributed load g = 1kN/m is applied in right edge as shown in Figure 1. The
analytical solution is given, accordingly to Artioli et al. [6], by

u(x, y) =
g

E
x (1)

and

v(x, y) = −νg

E
y, (2)

where E = 1Mpa is the elastic modulus and ν = 0.3 is the Poisson coefficient.

Figure 1. Unitary square plate problem.

Figure 2 shows the error of the displacement field associated with different element sizes. The error is
calculated accordingly to Artioli et al. [6] and it is given by:

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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e(uh, u) =

√√√√√√
∑

x∈Th

∥u(x)− uh(x)∥2∑
x∈Th

∥u(x)∥2
, (3)

It is possible to observe the effects regarding the choice of the stabilization term given by the convergence rate that
is not as expected. Also, the errors are very close independent of the size of the elements, showing the robustness
of the method as discussed on Veiga et al. [9].

Figure 2. Unitary square plate displacement error.

3.2 Non-convex pentagon

For the pentagon, the same material parameters were used as for the unitary square and the problem geometry
can be observed in Figure 3. Similar to the square plate, the pentagon orthogonal edges are unitary and the inclined
edge has length

√
2/2. Figures 4, 5 and 6 show respectively the maximum absolute values for the displacements

uh, vh and U using the VEM and Ansys. It is worth mentioning that U refers to the total displacement given by
U =

√
u2
h + v2h. It can be observed that the VEM convergence rate is slower than Ansys. Again, this might occur

due to the choice of the stabilization term.
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Figure 3. Non-convex pentagon problem.

Figure 4. VEM vs. Ansys uh solution.
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Figure 5. VEM vs. Ansys vh solution.

Figure 6. VEM vs. Ansys U solution.

3.3 Plate with a hole

This application concerns to a thin rectangular plate with a hole as shown in Figure 7. The plate has width
of 60cm, height 10cm and thickness of 1cm. The hole diameter is 1cm and a stress field σN = 1000kN/m2

is applied in the edges. The main goal here is to use the Virtual Element Method to estimate the stress field and
calculate the concentration factor.
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Figure 7. Plate with a hole problem.

The concentration factor is calculated as in Young and Budynas [12] and its numerical value for this geometry
is given by CF = 3.034. Figures 8 and 9 show, respectively, the concentration factor estimated using the VEM
and the error between the numerical and the analytical solution.

Figure 8. Concentration factor estimated with the VEM.
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Foz do Iguaçu, Brazil, November 21-25, 2022



TWO-DIMENSIONAL ELASTIC LINEAR PROBLEMS USING THE VIRTUAL ELEMENT METHOD

Figure 9. Error between numerical and analytical solution.

As can be seen, the error is considerably small even for few elements. For example, for 1995 elements the
error is approximately 1%. Again, it is possible to observe the effects of the stabilization term on the convergence
rate of the error.

4 Conclusions

In this work, a qualitative analysis of the Virtual Element Method applied to solve the differential equations in
the linear elasticity context was presented. An implementation pipeline was proposed and the main characteristics
of the method was presented. Three applications of the method were shown and the implementation was based
on matrix frameworks that are closer to an engineering approach. Also, the implementation was restricted to the
linear case (k = 1).

It was possible to observe that the stabilization term takes an important role in the convergence rate of the
method. This occurs because the term is related to the non-polynomial terms projection residues and some sta-
bilization terms might not represent the behavior of the non-polynomial part in an adequate. On the other hand,
the method presented robustness in the sense that for few number of elements, considerably small errors were
obtained.
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