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Abstract. The 1D shallow water equations model the unstable flow of an incompressible newtonian fluid in a
channel. These equations are given by the conservation of mass and linear momentum, and can be viewed as an
average of the Navier-Stokes equations under the assumption that the vertical length scale is much smaller than the
horizontal length scale. These equations, also known as Saint-Venant equations, compose a system of conservation
laws of hyperbolic nature, allowing for discontinuous solutions. In order to provide a numerical methodology for
the approximation of the Saint-Venant equations capable of accurately representing such discontinuous solutions,
in this work we adopt the Discontinuous Galerkin method. This class of finite element methods is based on
the weak formulation of the differential equation to be studied, and uses discontinuous piecewise polynomial
approximations. We present some numerical experiments for different flow regimes and non-horizontal beds for
the 1D shallow water problem, such as idealized dam breaking, hydraulic jumps and transcritical flows in channels
with non-constant bathymetry.

Keywords: Finite Element Method, Hyperbolic Systems, Shallow water equations, Discontinuous Galerkin, Saint-
Venant equations.

1 Introduction

The one-dimensional shallow water equations, models the unstable flux of a newtonian fluid in open channels.
These equations are given by the conservation of mass, the balance of the linear momentum and can be seen like
an average of the Navier-Stokes equations. In this case, the vertical length scale of the water depth is relatively
small in relation to the horizontal scales. There are usually called of the Saint-Venant equations, name that is due
to the french engineer Adhémar Jean Claude Barré de Saint-Venant, who firstly published these equations in 1871
De St Venant [1].

For a channel with length L > 0 and a time interval (0, T ), the Saint-Venant equations are given by the mass
balance of the fluid

∂A

∂t
+

∂Q

∂x
= 0, (x, t) ∈ (0, L)× (0, T ) (1)

and the linear momentum balance equation which can be written as

∂Q

∂t
+

∂

∂x

(
Q2

A
+ gI1

)
= gA (S0 − Sf ) + gI2, (x, t) ∈ (0, L)× (0, T ), (2)

where A = A(x, t) is the wetted cross-section area at position x and time t, Q = Q(x, t) is the flow rate, g is the
gravitational acceleration (taken as 9.81 m/s2), I1 and I2 are terms that account for the hydrostatic pressure force
and the wall pressure force, respectively, being expressed by

I1 =

∫ h(x,t)

0

(h− y)b(x, y)dy, and I2 =

∫ h(x,t)

0

(h− y)
∂b(x, y)

∂x
dy, (3)

and where b = b(x, y) is the channel width which, for a given point x, is also a function of the depth y, as depicted
in Figure 1, and h = h(x, t) is the water depth, which can be post-processed from A and b. Finally, zb(x) is the
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channel bed elevation at point x, measured from a datum, S0 represents its spatial derivative

S0 =
∂zb
∂x

(4)

and Sf designates a friction slope term that can be written as

Sf =
n2Q|Q|
R4/3A2

(5)

where R is the hydraulic radius (ratio between the wetted area and the wetted perimeter of the channel) and n
(s/m1/3) is the Manning roughness coefficient. The estimation of the Manning coefficient is a hard problem
related with the simulation of floods in natural channels Lai and Khan [2].

zb

h

z = zb + h y = 0

y

A

z = 0

B

b(y)

Figure 1. Illustration of a cross-section in a point x ∈ (0, L) that shows the setting of the problem. The term B, that
not appears in the equations (1) and (2), represents the maximum width of the cross-section and b(y) represents
the variation of the width of the cross-section.

2 One-dimensional Shallow Water Equations in Uniform Rectangular Channels

Consider now a rectangular uniform channel, that is, for any cross-section in x ∈ (0, L), we have a rectangle
with fix width b > 0. In this case, the Saint-Venant equations are given by

∂h

∂t
+

∂q

∂x
= 0, (x, t) ∈ (0, L)× (0, T ); (6)

∂q

∂t
+

∂

∂x

(
q2

h
+

gh2

2

)
= gh (S0 − Sf ) , (x, t) ∈ (0, L)× (0, T ). (7)

In the equations (6) and (7), the height of the water h and the flow rate q are the searched variables and the
remaining terms are the same of the equations (1), (2) and (4), with the exception of Sf , which now is given by

Sf =
n2q|q|
h10/3

. The equations (6) and (7) are an simplification of the equations (1) and (2).

2.1 Flow Regimes

In our numerical experiments, we will simulate different flow regimes. These patterns depend on the fluid
velocity and are featured by a dimensionless constant called Froude number. The Froude number FR(x, t) calcu-
lated at a point (x, t) ∈ (0, L) × (0, T ) is equal to the quocient of the inertial and gravitational forces. It is given
by

FR(x, t) =
u(x, t)√
gh(x, t)

, when u(x, t) =
q(x, t)

h(x, t)
. (8)

Using the Froude number, we have the following classification of a flow in a point (x, t) ∈ (0, L)× (0, T ). If

FR(x, t) =


1, then the flow regime is critical in (x, t) ∈ (0, L)× (0, T );

< 1, then the flow regime is subcritical in (x, t) ∈ (0, L)× (0, T );

> 1, then the flow regime is supercritical in (x, t) ∈ (0, L)× (0, T ).

(9)

Finally, a fluid is said to be in a transcritical flow regime if there is a change in the Froude number so that FR(x, t) >
1 for some x ∈ (0, L) and FR(y, t) > 1 for some y ∈ (0, L) with x ̸= y.
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3 Discontinuous Galerkin Method

We can write the equations (6) and (7) according to the vector balance law

ut + f(u)x = s(u(x, t), x, t), in (0, L)× (0, T ), (10)
u(x, 0) = g(x), for all x ∈ (0, L), (11)

provided with suitable boundary conditions and where

u =

 h

q

 , f(u) =

 q

q2

h
+

gh2

2

 , s(u, x, t) =

 0

gh (S0 − Sf )

 . (12)

Let {xj−1/2, xj+1/2}Nj=1 a partition of the interval (0, L) with intervals of the partition Ij = (xj−1/2, xj+1/2),
and length ∆xj = xj+1/2 − xj−1/2. Each interval Ij will be a element of our spatial domain (0, L). We will ap-
proximate the exact solution by a numerical solution in each element Ij of the domain. This numerical solution on
each interval Ij will belongs to a finite-dimensional subspace of L2(0, L), which we call the approximation space
Vh.

The finite-dimensional subspace of L2(0, L) used in the method is the space of polynomials of degree up to
k

Vh := V k
h := {v ∈ L2(0, L); v

∣∣
Ij ∈ P k(Ij), j = 1, 2, . . . , N}. (13)

The local variational formulation of the problem (10)-(11) it is given by∫
Ij

∂uh

∂t
(x, t)vh(x) dx−

∫
Ij

f(uh(x, t))
∂vh

∂x
(x, t) dx

+ f(uh(xj+1/2, t))vh(x
−
j+1/2)− f(uh(xj−1/2, t))vh(x

+
j−1/2) =

∫
Ij

s(uh(x, t), x, t)vh(x) dx,

(14)

∫
Ij

uh(x, 0) dx =

∫
Ij

g(x)vh(x) dx. (15)

The values f(uh(xj+1/2, t)) and f(uh(xj−1/2, t)) not are well defined, then are replaced by a numerical
flux. The numerical flux that we will use in our numerical experiments will be the HLL flux. Following Khan and
Lai [3],applying to the one-dimensional shallow water equations, the HLL flux it is given by

fHLL =


f−, if SL ≥ 0;
SRf

− − SLf
+ + SLSR (u+ − u−)

SR − SL
, if SL < 0 < SR;

f+, if SR ≤ 0.

(16)

SL = min
(
u− −

√
gh−, u+ −

√
gh+

)
;

SR = max
(
u− +

√
gh−, u+ +

√
gh+

)
;

(17)

or

SL = min
(
u− −

√
gh−, u∗ − c∗

)
;

SR = max
(
u− +

√
gh−, u∗ + c∗

)
;

(18)

when

u =
q

h
; u∗ =

1

2
(u− + u+) +

√
gh− −

√
gh+; c∗ =

1

2

(√
gh− +

√
gh+

)
+

1

4
(u− − u+). (19)

We want to get an approximate solution uh = [uh,1, uh,2]
T , when uh,1, uh,2 ∈ Vh and such that the varia-

tional formulation holds. The local variational formulation (14)-(15) generates a system of coupled ODE’s that can
be solved by a scheme for time evolution. The scheme used will be the Strong Stability Preserving Runge-Kutta
(SSP-RK). Another problem to be treated is the appearance of spurious ascillations when we choose the basis
of Vh, being formed by polynomials of degree greather than or equal to 1, which is predicted by the Godunov’s
theorem. For more information, see Cockburn and Shu [4].

We will denoted by DG0 the discontinuous Galerkin method using the approximation space with piecewise
constant polynomials and by DG1 the approximation space with piecewise linear polynomials.
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Foz do Iguaçu, Brazil, November 21-25, 2022



Numerical Resolution of the One-dimensional Shallow Water Equations by the Discontinuous Galerkin Method

4 Numerical Experiments

In this section we will present some numerical experiments of the proposed discontinuous Galerkin method,
applied to the shallow water equations on a uniform rectangular channel (6)-(7). The numerical experiments will
be the dam-break with friction on the bed, the hydraulic jump and the flow in the transcritical regime in a domain
with bumps. In the methods DG0 and DG1, we will use the HLL numerical flux. The Courant number chosen will
be ν = 0.1. The numerical solutions obtained by the methods DG0, DG1 in this setting and in meshes with 50
or 100 elements will be compared with the reference solutions obtained by the DG1 method on a mesh with 1000
elements and using the HLL numerical flux.

4.1 Dam-break in a rectangular channel with bed friction

We will simulate a dam-break in a horizontal rectangular flume with friction on the bed. The flume has
0.096m of width, 0.08m of heigth and 20m of length, with a dam localized in 10m. This flume is made of wood,
and the Manning roughness coefficient in this case is given by n = 0.009 s/m1/3. The depth of water on the
upstream is 0.074m, with dry bed on the downstream. The dam is taken away instantaneously, and the flow is
simulated. The water depth and the flow rate simulated after 9.4 s after the dam-break are shown in the Figure 2.
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Figure 2. Simulation of a dam-break with bed friction in t = 9.4s by the DG method. In the left, we have the
simulated water depth z = zb + h. In the right, we have the simulated flow rate q.

In the Figure 2, we see that the discontinuous Galerkin provides a good approximation of the water depth
compared with the reference solution and treated well the dry bed condition, which is the condition such that
h(x, t) = 0 for some (x, t) ∈ (0, L) × (0, T ). It can be seen that the DG1 method approximates the reference
solution better than the DG0 method. We also see that the DG method approximates the flow rate without spurious
oscillations.

4.2 Hydraulic jump

We will run the simulation of a hydraulic jump. The channel has 14m of length and 0.46m of width, with
horizontal bed. The Manning roughness coefficient is taken equal to n = 0.008 s/m1/3. The water depth in the
initial condition is 0.031m, and a discharge of 0.118m2/s are specified. On the downstream, the water depth
grows from 0.031m to 0.265m in 50 s, and remains constant equal to 0.265m after that. The numerical solutions
in steady state for the water depth and the flow rate are shown in the Figure 3.
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Figure 3. Simulation of a hydraulic jump in steady state. On the left, we have the simulated water depth z = zb+h.
On the right, we have the simulated flow rate q.

In the Figure 3, we see that the DG1 method fails in the exact location of the shock compared with the
reference solution. In this experiment, the DG0 method better captures the shock location and the formation of
discontinuities. We observe that the failure is generated by the lack of balance of the shallow water equations in
the DG method. As the solution is in steady state, the flow rate should be constant, which does not happen in
the DG0 method, in the DG1 method and neither in the reference solution, that is given by the DG1 method in a
super-refined mesh.

4.3 Flow in the transcritical regime in a domain with bumps

We have a channel without friction and with 1m of width and 25m of length, with bed elevation zb given by

zb(x) =

{
0.2− 0.05(x− 10)2, if 8 ≤ x ≤ 12;

0, otherwise.
(20)

We will simulate a fluid with transcritical flow regime on a channel with bumps, using the initial water depth
given by 0.33m, with dry bed. The flow rate on the upstream is given by 0.18m2/s, and the water depth on the
downstream it is 0.33m. The fluid changes from the subcritical to the supercritical regime, and then back to the
subcritical regime along the x-axis through a hydraulic jump. The numerical solutions in steady state are shown in
the Figure 4.
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Figure 4. Simulation of a transcritical flow by the DG method in steady state. On the left, we have the simulated
water depth z = zb + h. On the right, we have the simulated flow rate q.

From Figure 4, we see that the DG method can approximate the reference solution well. The approximation
of the flow rate, again, it is not good. As we are in the steady state, we should have constant flow rate, but the lack
of balance of the equations generates spurious oscillations in the numerical approximation of the flow rate by the
DG method.
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5 Conclusions

The discontinuous Galerkin method it is a appropriate choice for solving the one-dimensional shallow water
problem, because it is able to capture shock waves and allows the increase of the accuracy order with the use of
slope limiters. However, the application of the method in balance laws, where source terms are presented, requires
a certain balance of the discrete equations, in order to approximate the solution well near the discontinuities and
regions where the bed slope is not smooth. For future work, it is proposed to study and implement the well-balanced
methodology of Xing [5] and Lai and Khan [2], for the proper treatment of this problem.
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