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Abstract. Parallel manipulators (PMs) are a viable design alternative for industrial applications. Due to their
closed kinematic architecture, they present some advantages compared to their serial counterparts: lightness, high
speed/acceleration ratios, high rigidity, load capacity, and high compactness. However, this design option could
yield undesired vibrations due to its components‘ flexibility requiring the implementation of novel joint and task
space control strategies. Two main challenges arise when designing a control strategy for a PM: the lack of a
direct measurement of the end-effector‘s pose and their coupling dynamics. This work proposes an estimator for
assessing the end-effector‘s pose of a PM using Artificial Neural Networks using measurements from encoders,
strain gauges and camera. The encoders measure the angular displacement of the active joints of the manipulator,
the strain gauges the deformation of the links and the camera the position of the end effector. The proposal is
validated using experimental data from a 3RRR PM with flexible links. The estimator can be used in control
schemes to enhance the performance of flexible PMs.
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1 Introduction

The manipulators are constituted by a set of bodies called links, the links when joined by joints acquire the
condition of kinematic chain, that is, kinematic chain can be interpreted as a set of links and joints. A serial kine-
matic architecture manipulator, it is a manipulator that presents a single kinematic chain, and this is connected to
the base. While a parallel kinematic architecture manipulator is one that has more than one kinematic chain con-
nected to the end effector. The parallel kinematic architecture handlers, also known as parallel handlers (PKM ).
They present several advantages over the traditional architectures of [1] manipulator robots. Among these advan-
tages we can mention lightness, high rigidity, load capacity, high speed/acceleration ratio and high compaction.
As a result, this type of architecture has proven to be a great choice when it comes to designing high-performance
dynamic and energy-efficient [2] manipulators. However, as is to be expected, making use of these advantages in
the design of handlers also has some disadvantages, such as difficulties with the design of control systems of the [3]
engine. Taking this difficulty into account, the present work proposes the creation of an estimator to evaluate the
pose of the final effector of a PKM with flexible links, using Artificial Neural Networks. Some related works have
already been developed. In the work of Bidokhti and Enferadi [4] the problem of the direct kinematics of a robotic
planar manipulator 3RRR is addressed, this problem is solved using two different methods of Artificial Neural
Networks, one is a Multi-Layer Neural Network, while either a Radial-Based Neural Network. Both networks
used the resolution of the inverse kinematics of the robot as a training dataset, in the work the effectiveness of the
solution is demonstrated by comparing a simulated spiral path with a real path, and for both networks the total
error during the simulated path was acceptable, which confirms the reliability of the methods. Elsheikh, Showaib
and Asar [5] also studied direct kinematics in 3-RPR, 3-PRR and 3-RRR manipulators with an Artificial Neural
Network approach, in his work he claims that the approach proposed by him can certainly learn the input and
output data, deducing the nonlinear relationships that are inherent to training. Applications of Artificial Neural
Networks are also made to obtain the inverse kinematics of robots. The work of Moori, Khoramdel and Moosavian
[6] which is a spherical 3RRR parallel robot has as one of its objectives to make quick calculations and overcome

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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the manufacturing uncertainties present in the robot, for that the inverse kinematic equations present in the prob-
lem are solved by a Multi-Layer Perceptron Network. The authors Csiszar, Eilers and Verl [7] carried out a work
proposing a supervised approach to solve the problem of inverse kinematics and calibration, in this work it was
proposed that instead of creating an ideal model for each robot, and then calibrating each one individually, train it
through a Neural Network to learn the function of inverse kinematics, since this would already include errors due
to manufacturing and/or assembly tolerances.

2 Materials and methods

2.1 Materials

The manipulator under study is the 3(P)RRR (Figure 1), present in the Dynamics laboratory at EESC-USP.
This is a closed kinematic chain planar parallel manipulator that has three identical kinematic chains that are linked
to the end effector, each of these chains having four joints, one of them prismatic and active (P) and the other three
( RRR) rotational, with the joint furthest from the end-effector being active and the other two passive. For this
work, although the manipulator in question can be used as 3(P)RRR, this is not done, since the prismatic joints are
not used. So for this work the handler in question can be treated as 3RRR.

Figure 1. Current prototype

As this work will only use the 3RRR mode of the prototype, the only motors (EC60 flat da Maxon
brushless, with 100W of power and a rated current of 2.3A, coupled to planetary gearboxes GP52C with a
reduction of 3.5 : 1, providing a rated speed of 1200RPM and rated torque of 0.82Nm) assets are M4, M5 and
M6. These motors are responsible for providing movement to the motor joints, and for their correct functioning
they have controllers (Maxon EPOS250/5, power supply up to 50V dc and current of 5A). Figure 2 shows a
diagram of the communication. The communication between the motors and the data acquisition board (Eletronic
Controller Unity, model DSPACE 1103) is done via CAN protocol, with a transmission rate of 250kbit/s. This
protocol is responsible for both motor activation and encoder data acquisition. For strain measurement, strain
gauges (HBM 1-LA11K3/350-E) are used in a full bridge configuration, these are attached to each link of the
manipulator to perform strain measurements for each of them. The signals collected by the strain gauge bridge
need to be read by the A/D inputs of the data acquisition board, however, for this to be possible, they need to
pass through a signal amplifier (HBM BM40). The current manipulator has markings, which with the help of the
camera are responsible for monitoring the position of the end effector. To make this possible, the blue markings
(Figure 1) made on the actuators are used to find the center of the workspace. While the red and green markings
(Figure 1) are related to finding the position in relation to the center, this is a Computer Vision technique [8].

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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Figure 2. Instrumentation and its communication scheme

2.2 Methods

Inverse kinematics

The manipulator 3RRR (Fig. 3) with rigid links can be modeled kinematics considering the geometric con-
straint

∥∥∥−−−→BiCi

∥∥∥ = ∥rCi − rBi∥ = l2, where rCi and rBi are the position vectors of the passive joints Ci and Bi.
This restriction imposes:

∥∥∥∥∥∥
µi − l1 cos(θi)

ρi − l1 sin(θi)

∥∥∥∥∥∥ =

∥∥∥∥∥∥l2
cos(βi)

sin(βi)

∥∥∥∥∥∥ = l2, (1)

where µi and ρi are defined below as

µi

ρi

 =

x
y

− hi

cos(α+ ηi)

sin(α+ ηi)

− ai

cos(λi)

sin(λi)

− δi

cos(γi)
sin(γi)

 . (2)

So θi can be calculated as

θi = 2arctan(
−ei1 ±

√
e2i1 + e2i2 − e2i3

ei3 − ei2
), (3)

on what ei1 = −2l1iρi, ei2 = −2l1iµi e ei3 = µ2
i + ρ2i + l21i − l22i.

And we also have that βi can be given by

βi = arctan(
ρi − l1 sin θi
µi − li cos θi

), (4)

Artificial neural networks

Artificial neural networks (ANNs) are inspired by the structure and functioning of the nervous system, thus
seeking the ability to simulate the way the human brain acquires knowledge [9]. According to Haykin [10] a neural
network is a massively parallel distributed processor that has a simple processing unit and its natural function is
to store the knowledge acquired through experience and make it available for use. He states that a neural network
is similar to the brain in two aspects, the first being related to the fact that the network acquires knowledge of
the environment around it, through a learning process. The second aspect is related to the fact that the network
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Figure 3. Schematic of 3RRR

has connection forces between neurons that are known as synaptic weights, used to store the acquired knowledge.
When it comes to ANNs, two basic principles of building these networks should come to mind: Architecture and
Learning. The architecture of an ANN concerns the type, number of processing units, and finally, the way neurons
are connected, while Learning is related to the rules that are used to adjust weights in networks, and which the
information is used by the rules[9]. The architecture of ANNs has three basic types: Fed-Forward Networks with
Single Layer, Fed-Forward Networks with Multiple Layers and Recurrent Networks. For the present work, the use
of Multi-Layer Networks was made, one of the ANNs used in the work can be seen in Fig. 4.

Figure 4. Multi-Layer Neural Network

In each ANN neuron there is an activation function, the most common are: linear function and sigmoid
function. The sigmoid function is more suitable for problems of a nonlinear nature. Thus, for this work, we used a
type of sigmoid function called hyperbilic tangent (eq. 5). for eq. 5 U is the input, while β is a constant.

σ(U) =
1− e−βU

1 + e−βU
. (5)

For ANN Learning, Backpropagation was used and the Mean Square Error (MSE) was used to assess
learning. Learning is supervised, since inputs and outputs are known, so an error correction learning algorithm
was used. The most used learning algorithm of this type is Backpropagation. According to Parker [11], two
types of signals are identified in the network for this type of training. One is called a Functional signal, this being
an input signal (stimulus), it affects the input terminal of the network and propagates forward (neuron by neuron),
until it emerges at the output terminal of the network. The other is said as Error Signal, this one originates in an
output neuron of the network and propagates backwards (layer by layer). The Functional Signal traversing the
network generates a response based on its current synaptic weights, this phase is known as ”forward propagation”
(forward). The output found is compared to a desired response, and the Error Signal is propagated backwards
correcting the synaptic weights, this phase is known as ”backward propagation” (backward). This process is
repeated until the output error is within the range imposed at the beginning of the training process. The final
synaptic weights obtained by the network are equivalent to the trained network, at this point it is expected that
when entering a certain input, the desired response will be obtained. The EQM is used as a measure of network
performance, and the lower its value, the better. The eq. 6 shows how its calculation is done.

MSE =
1

N

n∑
i=1

(y
′

i − yi)
2 (6)

in eq. 6 y
′

i is the desired answer, yi is the value that seeks to be close to y
′

i and N is the number of elements
being analyzed.
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Description of the problem situation and work methodology

For the problem in question, we want to find a function F that describes the model, presented in eq. 7.

(x, y, α) = F (θ1, θ2, θ3, s1, s2, s3, s4, s5, s6). (7)

In this model x, y and α refer to the position of the end effector. θ1, θ2 and θ3 deal with the angular
displacement of the active joints, while s1, s2, s3, s4, s5 and s6 deal with the deformation of each of the manipulator
links. The F function is a non-linear function, finding this function analytically would be a complex job. In
Machado’s work [12] this can be verified for the modeling of a single link. The present work seeks to find an
Artificial Neural Network that reproduces the function F . The work follows a work methodology that is divided
into three main parts: Obtaining Data, Data Treatment and Training Neural Networks. All simulations performed
in this work, in each of these three stages, made use of the MATLAB software.

3 Results

3.1 Obtaining Experimental Data

To obtain the experimental data, the instrumentation and the communication model presented in Figure 2 were
used. Torques of -10°, 10°, -20° and 20° were applied to the manipulator motors 3RRR (Figure 1), these torques
could be applied to one motor individually, in two motors simultaneously, or on all three engines simultaneously.
An example of system activation could be -10° M4, 20° M5 and 0° M6, activations of this type were made
32 times at random and with the initial position of the end effector also random. Thus, for each triggering, a
data matrix of dimension 12 X 10001 points was obtained, with the twelve rows of the matrix corresponding to
the values of x, y, α, e1, e2, e3, s1, s2, s3, s4, s5, s6, where in each column a value was recorded for each variable
every 1 ms, during 10.001 s of operation, totaling 10001 data points.

3.2 Treatment of Experimental Data

The data collected by the system needed to be treated before being inserted into the Neural Networks. One
of the problems presented in the data collection was an excess of irrelevant data for the training of the networks,
these data comprised the moment before the manipulator operation and the moment after its operation, removing
these data the width of the matrices dropped from 10001 points to 5176, a reduction of nearly half the data. The
rest of the data processing was done according to the type of data used.

For the data on the position of the end-effector and strain gauges, digital low-pass filters were used, an idea
used by Félix [13] in his work. The use of this filter was responsible for a smoothing of the data.

The encoders used are incremental, so they do not have an initial reference. With that, the inverse kinematics
of the rigid manipulator was used, in order to calculate the initial reference with the aid of Computer Vision [8],
later these data were added to the incremental data of the encoder to find the angular displacement. At the end of
the treatment, it was verified that of the 32 operations performed, only 28 were valid.

3.3 Neural Network Training

For the work in question, so far, the use of Multi-Layer Fed Forward Networks has been used. A first strategy
used was to group all trajectories into a single one, and use it for training the neural network, dividing the points
of this trajectory into three groups: training, validation and testing, aiming to use the cross-validation method. In
order to analyze the performance of a Neural Network in relation to its own variables: training set size, number
of layers and number of neurons per layer. For this, a scheme was made, where training sets with 1 trajectory, 8
trajectories, 15 trajectories and 22 trajectories were used, 1 or 2 hidden layers and each of these layers ranging
from 1 to 10 neurons. All possible combinations between these network variables were performed, the result is
shown in Fig. 5.

The graph shows that the more trajectories are added to the network, the worse its performance becomes
(mean squared error increases). For training with 1 trajectory, 8 trajectories, 15 trajectories and 22 trajectories the
best results for the test data were respectively: 1.02 ∗ 10−6, 5.59 ∗ 10−4, 2.02 ∗ 10−3 and 9.7 ∗ 10−3. Fig.5 shows
that the performance values also improve as the network complexity increases (more layers and more neurons
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Figure 5. Variation of neural network parameters

per layer). For a fixed number of trajectories, there is a decrease in the value of the MSE, that is, an increase in
performance.

Figure 6. Variation of neural network parameters for a trajectory

In Fig. 6 it shows the decrease of the MSE value for the training of a trajectory. It is possible to observe
that for a single trajectory the performance results were the best, so it was decided to train the 28 available neural
networks and verify if, by training all of them, it would be possible to reach a network that generalizes to all the
others. For this, the neural network illustrated in Fig. 4, the result for the first six trajectories is shown in Tab. 1.

Although the data presented only illustrate the first six trajectories, they are not very different from the rest,
and it does not make sense to include them all here. For the same trajectory that is being trained, the error is low,
in the order of 10−8 to 10−6, while for the others sometimes the MSE is a value greater than unity. With this, it is
possible to conclude that this method was not enough to obtain a generalist network.
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Table 1. MSE (Trajectories x Networks)

Trajectory net1 net2 net3 net4 net5 net6

1st 3.3248e-08 0.1754 32.9263 0.9201 0.6137 0.2810

2nd 0.0520 4.3655e-08 16.1981 0.2794 0.3825 0.7424

3rd 0.1819 0.1915 4.1479e-06 0.8568 0.6999 0.3051

4th 0.1986 0.1708 44.9290 9.5972e-07 1.1229 0.2951

5th 0.5008 0.4001 63.4788 0.4774 9.4237e-08 0.0579

6th 0.4843 0.3371 38.4117 0.6701 0.1251 4.2879e-08

4 Conclusions

So far, the use of Multi-Layer Neural Network is not proving to be adequate, it is not yet known if this is
happening due to a characteristic of the network itself, or if the problem is in the way the data is being treated. For
future work, a next network architecture that will be used is the Recurrent Networks, it is expected to achieve a
network that can make the generalization.
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