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Abstract. In this work, an Artificial Neural Network (ANN) is employed to predict the effective (i.e., bulk) thermal 
conductivity of a granular assembly. The ANN is trained with the help of computed thermal conductivities of 
various different assemblies, obtained through several simulations with our in-house DEM (Discrete Element 
Method) code. Convection and radiation are not considered as to isolate the conduction problem and allow for a 
better estimate of the assembly’s effective response. The methodology enables the effective thermal conductivity 
of a granular assembly over a wide range of parameter values, including particles’ size and their material’s 
conductivities.  
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1  Introduction 

Granular systems display different characteristics on multiple spatial and temporal scales. While the response 
of granular materials (from a macroscopic scale) may at times appear to be similar to that of a continuum, when 
seen from the mesoscale, they are essentially a system of multiple (and interacting) discrete particles. In addition 
to physical experiments, computational simulation and numerical approaches can be useful to a better 
understanding of the phenomena involved in those materials. Moreover, regarding to heat transfer in dry particulate 
media, it can be found in the literature that the conduction contribution is considered the most significant form of 
heat transfer. It depends on the conductivity of the particles’ constituent material, the inter-particle contacts (which 
provide one source of coupling between the thermal and mechanical fields) and the overall structure of the particle 
packing. The thermal conductivity of particulate beds is an important property for many industrial handling 
processes as well as for storage of particulate materials, where parameters such as temperature, particle size, and 
pressure (to cite just a few) significantly affect the thermal response. The significance of thermal conduction can 
be present in applications like the usage of geothermal energy, buried earth-structures, radioactive waste disposal 
[1] or even simply storing particles in a silo after drying [2]. The effective thermal conductivity eff )(k  of a granular 
bed depends on various parameters pertaining to both bulk material and microstructural properties. We can find in 
the literature several analytical and numerical models for the prediction of effk of granular assemblies [2] [3] [4] 
[5] [6] [7], however, they are mostly restricted to certain (simple) types of particle packings, whereas the numerical 
ones, although more general, are usually relatively computationally expensive and time-consuming. On the other 
hand, ANN, as a deep learning method, have received a great deal of attention over the last decade and 
demonstrated excellent performance in material property prediction and material design. Deep learning is a subset 
of machine learning and refers to any ANN with more than two hidden layers. The aim of the present work is to 
propose a methodology based on ANNs to predict the effective thermal conductivity of a granular assembly over 
a wide range of parameter values, in order to reduce the dependency on time-consuming simulations that takes to 
predict this parameter numerically. The text is organized as follows: in Section 2 we briefly present the reference 
model that we will use to compare our results; in Section 3 we introduce our ANN model; in Section 4 we present 
our results along with a brief discussion; and in Section 5 we close the paper with our conclusions. 
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Figure 2. Left: Gaussian distribution of the particles’ radii. Right: Average temperature of simulation 7 

2  Conduction through a 3D particle assembly 

To create the training dataset for the ANN from numerical simulations, we perform seven DEM simulations 
based on a model problem of a previous works of the authors [8] [9], where a three-dimensional particle assembly 
of 3500NP   particles are randomly packed under gravity within a cubic box, and subjected to a gradient 
temperature of 1100K  in its x direction, as depicted in Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The box has side dimensions of 0.03L m, whereas the particles have radii following a Gaussian 

distribution with mean 0.001r m and stv. dev. of 0.00001666 m (the distribution is truncated at three std. dev. 
from the mean, see Figure 2, left). The thermal gradient  ( T ) is enforced by holding the temperatures of the two 
opposite walls of the box in the x direction at 1500K and 400K indefinitely, respectively, with the particles’ 
initial temperatures being set at 300K . Convection and radiation are not considered as to isolate the conduction 
problem. Other data are summarized in Table 1. 

 
 
 
 
 
 
 
 
 
   
   

Table 1. Values used in the simulation 

Parameter Value 
Particles’ material density 1.000 kg/m3 
Particles’ elastic modulus and Poisson’s ratio 0.001 GPa and 0.30 
Contact and friction damping rate 0.1 
Friction and rolling resistance coeffs. between particles µs = µd = 1.0 and µr = 0.9 
Friction and rolling resistance coeffs. between particles and 
walls 

µs = µd = 0.65 and µr = 0.9 

Simulation time and time-step size1 tf = 60 s and Δt = 5.0 x 10-5 

 
1 The criterion adopted is the same of [8] [9], which is based on Hertz’ contact theory (see Johnson [11]). 

~ 0.03 m 

Figure 1. Problem definition. Left: 2D view of the stages during the deposition of the particles.                  
Right: perspective view of the final deposition stage (final configuration)  
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Figure 3. Conduction through a 3D particle assembly. Snapshots from simulation 7. 
Sequence is from left to right, top to down 

By releasing the system at 0t   and computing the evolution of heat over time, we obtain the effective 
thermal conductivity in the x direction through   

             with    1,..., ,eff where
Q

Q i NP
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is the total heat that is provided to the system, in which im is the particles’ mass, iC  is the particles’ specific heat, 
 i is the particles’ thermal change (w.r.t. the initial time), /T T L    is the applied thermal gradient, 
 A L L  is the cross-sectional area to the flow and t  is the time interval considered. Between the seven 

simulations, we vary two parameters for the training dataset namely, the specific heat and the thermal conductivity 
( ik ) of the particles. The values of effk obtained from each simulation through equation (1) are summarized in 
Table 2. For a typical illustration, we choose simulation seven to show the average temperature of the system’s 
configuration (Figure 2, right) and a sequence of snapshots at selected time instants (Figure 3). 

Table 2. Values obtained in our DEM simulations and used to train the ANN 

Simulation iC  (J/kgK) ik  (W/mK) eff
k  (W/mK) 

1 100.0 100.0 0.5277 
2 110.0 110.0 0.5805 
3 120.0 120.0 0.6333 
4 130.0 130.0 0.6860 
5 140.0 140.0 0.7388 
6 150.0 150.0 0.7916 
7 160.0 160.0 0.8444 

 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

3  ANN model 

A typical ANN architecture consists of a collection of neurons distributed in several layers, where each layer 
has a set of neurons connected with the neurons of the previous and next layers through weighted functions. These 
layers are classified into three main categories: the input layer, which corresponds to the information or 
experimental observation, the hidden layer and the output layer (which gives the outputs). The information in each 
level is transformed with the aid of the activation function and further transferred to the next layer sequentially.  
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Here, the activation function maps the entry numbers into a small range (e.g., 0 to 1) to convert arbitrary real 
values into ones that can be interpreted as a probability. The neurons in each level are represented as components 
of vectors where the input layer is propagated through the ANN to the output layer, as depicted in the following 
expressions  
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In equation (2), i  represents each layer of the network with 0  as the input layer, *i is the activation 

function, ib  is the bias, iW  are the weight matrices and N is the total number of layers . The number of rows in 

iW  must be equal to the number of neurons in 1i  and the number of columns equal to the number of neurons 
in i . Training of the ANN means the evaluation of proper weights and biases to the transformation functions of 
the neurons, and this is achieved by minimizing the error  E by the expression (3). Here,E , also known as the 
cost function  J , is represented by the mean square error (MSE) 
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where ˆ Ni y  , iy corresponds to a known output value in the training dataset and NOb represents the number 
of observations in the dataset. The main task in the training is to obtain the smallest value of E  by updating the 
weights and biases and this can be performed through the backpropagation (BP) algorithm. Basically, the BP 
algorithm computes the gradient of the cost function applied to the output of the ANN w.r.t. the parameters in each 
layer. The design of the ANN architecture usually varies according to the type of problem and performance of the 
network.  

3.1 Creation and training of the ANN 

In the present work, we opted for a multilayer perceptron (MLP) neural model implemented in an in-house 
code written in Fortran with 2, 5 and 1 neurons in each layer where the two neurons in the input layer corresponds 
to each parameter that we are varying in the analysis (C ,k ), see Figure 4. To get the weights and biases that take 
 J to minimum, we use the gradient descent algorithm where the error is propagated through the network in the 
backward direction  
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In the equation (4),   corresponds to the learning rate. Since our dataset analysis is small, we decided to use 
the batch gradient descent where the gradient will be calculated using all the samples of the dataset. The sigmoid 
(logistic) function was adopted as the activation function for each layer (hidden and output). As we mentioned in 
the previous section, we train the ANN with the values of effk  obtained through several simulation with our DEM 
code where the results were presented in Table 2. We remark that we opted for only one hidden layer, taking into 
account the small size of our problem, but the proposed methodology is generalized for multiple hidden layers.  
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4  Results and discussion 

To test our methodology, we run other seven (new) simulations with different values of specific heat and 
thermal conductivities to obtain new values of effk  and then, we compare the results with those obtained from our 
trained ANN. The values of effk obtained from the ANN model and the simulations are summarized in Table 3.  

Table 3. Values used to test our methodology for the example with 3500NP   

Simulation iC  (J/kgK) ik  (W/mK) eff,Simulationk   

(W/mK) 
eff,ANNk  

(W/mK) 
1 105.0 105.0 0.55415 0.55400 
2 115.0 115.0 0.60692 0.61500 
3 122.0 122.0 0.64387 0.65800 
4 137.0 137.0 0.72303 0.74000 
5 145.0 145.0 0.76525 0.77600 
6 154.0 154.0 0.81275 0.80900 
7 165.0 165.0 0.87080 0.84100 

 
 
Figure 5 shows the regression plot between the ANN model and the numerical simulation presented in Table 

3, and Figure 6 plots the cost function w.r.t. the epochs (iterations) where the total epochs in the analysis was 
60.000. The squaredR   (coefficient of determination) measures how the regression model predicts in comparison 
with a reference data, accordingly  
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where effk  is the mean of the observed data (results from the simulations). A value of 2R  close to 1 indicates that 
the prediction is in good agreement with the actual data. As we can see from Figure 5 and Table 3 the results are 
in good agreement with those from the numerical simulations. We now test again our methodology but now with 
a different configuration, in this case the number of particles was 1000NP   within a square box of side 0.02L
m, and the particles have radii following a monosized distribution with 0.001r m. Other parameters are the 
same of the previous example, see Table 1. 

Figure 4. Architecture used to train the ANN  
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Figure 5. Regression plots for the results from simulations and predictions of ANN  
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Figure 6. Cost function as a function of epoch for the example of 3500NP   

 
 
 
 

 
 
 
 
    
  
 
 
 
 
  
 
We train the net with different values of specific heat and thermal conductivities (Table 4) and then, we test 

the model with new values and compare with the trained ANN, see Table 5. Figure 7 shows the regression between 
the simulated and trained data. With regards to the simulation times, the computation time required for the 
simulation of the example of 3500NP   is about 3.95 s per each 0.01s of the problem´s duration (which, for a 
problem´s duration of f 60t  s, implies 23700 s) in a standard, single processor laptop computer (at 2.30 GHz) 
with no parallelization nor usage of the graphics processing unit (GPU), in comparison with 0.828 s that takes to 
train the ANN with 60.000 epochs. This means a reduction of about 5 orders of magnitude, which we find quite 
remarkable.   

 
 
 
 
  
 
 
 
 
 
  
 
 
  
 
 
 

Table 4. Values used to train the ANN for example of 1000NP    

Simulation iC  (J/kgK) ik  (W/mK) *k  (W/mK) 
1 100.0 100.0 0.24742 
2 110.0 110.0 0.27216 
3 120.0 120.0 0.29690 
4 130.0 130.0 0.32164 
5 140.0 140.0 0.34639 
6 150.0 150.0 0.37113 
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Figure 7. Regression plot for the example of 1000NP   

Table 5. Values used to test our methodology for example of 1000NP   

Simulation iC  (J/kgK) ik  (W/mK) eff,Simulationk   

(W/mK) 
eff,ANNk  

(W/mK) 
1 107.0 107.0 0.26474 0.2640 
2 114.0 114.0 0.28206 0.2830 
3 128.0 128.0 0.31670 0.3200 
4 132.0 132.0 0.32659 0.3300 
5 146.0 146.0 0.36123 0.3600 
6 151.0 151.0 0.37360 0.3690 

  
 
 
 
 
 
 
 
 
 
 
  
 
 
    
  
 
 
 
 

5  Conclusions 

In this work, a simple ANN was implemented as a methodology for the prediction of the effective thermal 
conductivity of a granular assembly. The ANN was trained using the results of a model problem performed in our 
DEM code following the formulation of [8] [9].  From the obtained results, the methodology proved to work well 
for the purposes and type of problem we are interested in and proved to substantially reduce the computation time 
required to numerically estimate the effective conductivity of a granular bed once the net is trained. This truly 
motivates us to pursue in its advancement and extension. We remark that this work is the first stage of an on-going 
research and advancements over the present methodology shall appear later in a forthcoming paper. In this regard, 
the incorporation of more input parameters for training and different architectures of the networks are currently 
under development by the authors.   
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