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Abstract.
In this work, we present an analytical solution for a drainage process of a system of non-strictly hyperbolic

Conservation Laws describing the foam flow in porous media under effect of linear adsorption of surfactant. We
adopt a system composed of two differential equations, one modeling the conservation of saturation of the wetting
phase and the other the conservation of chemical in the wetting phase with linear surfactant adsorption.

The foam flow dynamic is assumed to follow the implicit texture STARS model. In this model, the foam
texture assumes local equilibrium, meaning that the foam formation rapidly attains a state where the bubbles
generation rate matches the coalescence rate. We present a geometrical construction of the analytical solution and
compare our results with a direct numerical simulation.

Keywords: Foam flow, Surfactant flooding, STARS model, Linear adsorption, EOR

1 Introduction

The use of foam in porous media has gained interest in the scientific community due to various applications,
including in the petroleum industry and the recovery of contaminated soil Zavala et al. [1]. Despite its high effi-
ciency, gas injection for enhanced oil recovery (EOR) is susceptible to reduction because of gravitational gradients,
reservoir heterogeneity, and other instabilities. All these issues with gas sweeping can be mitigated using foam
Ashoori et al. [2]. Appropriate use of foam can result in a significant reduction in the gas phase mobility, leading
to a better sweeping of porous media Kam [3].

Surfactant reduces the surface tension and capillary effects, enabling the formation of bubbles. The surfactant
molecules are susceptible to adsorbing on rock surfaces, affecting the surfactant concentration, which can lead to
foam destabilization Cantat et al. [4]. The high costs of chemicals and their loss due to adsorption can make such
a process economically unfeasible.

We use a Conservation Laws system that describes the foam flow and the transport of surfactants in the
wetting phase with their adsorption on porous media surfaces. This system is formed by two phases: a wetting
phase, composed of the mixture of water and surfactant, and a gaseous phase, where foam is a tracer. We adopted
the fractional flow function implemented in one of the industry simulators most used for EOR, the CMG simulator
with STARS model Cantañeda et al. [5]. This model assumes local equilibrium, which means that the foam
formation is attained immediately and is represented implicitly in the model by a mobility reduction factor of the
gas permeability depending on water saturation and surfactant concentration.

This work is organized as follows: In Section 2 we present and describe governing equations that model this
problem. In Section 3 we briefly present the main concepts about the waves involved in the solution. In Section
4 we construct the analytical solution using a geometric representation. Finally, in Subsection 4.1 we present
a comparison between the analytical solution and a numerical approach performed by the Reaction Convection
Diffusion Equations Solver (RCD).
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2 Mathematical model

To describe the foam and chemical transport with linear surfactant adsorption on porous media surfaces, we
adopt the following system

∂tS + ∂xf(S,C) = 0, (1)
∂t [(S +A)C] + ∂x [f(S,C)C] = 0, (2)

where S and C are the dimensionless and normalized saturation of the aqueous phase and surfactant concentration
respectively, (S,C) ∈ I × I with I = [0, 1], (x, t) ∈ R × R+, f : I × I → R is the fractional flow function of
the aqueous phase and A is a constant that represents the linear adsorption of the surfactant in rock surfaces. A
similar system was presented in the work of Isaacson [6], where he considered the oil displacement by polymer
flooding, but the chemical adsorption was neglected. Our approach is different from the one of Isaacson; while
he considered an increase of water viscosity by the presence of polymer, our model represents the foam formation
through a mobility reduction factor of the gas relative permeability.

To use Buckley and Leverett [7] fractional flow theory, we assume: 1D horizontal flow, Newtonian mobilities,
absence of capillary pressure gradient, negligible gravitational effects, no dispersion, incompressible phases, no
viscous ”fingering”, and immediate reach to the local steady-state.

The superficial velocity of the j phase, with j ={water, gas}, is given by

uw = −kkrw
µw

∇p, ug = −
kkfrg
µg

∇p, (3)

where k is the permeability of the porous medium, µj is the viscosity of the phase j, ∇p is the pressure gradient,
and krj are the relative permeabilities of the phase j, which can be expressed by

krj = k0rj

(
Sj − Sjr

1− Swc − Sgr

)nj

, (4)

where k0rj is the end point relative permeability of the phase j, nj is Corey’s exponent, Sj is the saturation of the
phase j, and Swc and Sgr are the connate water saturation and residual gas, respectively.

The term kfrg in eq. (3) represents the relative permeability of the gas phase in the presence of foam, which
can be expressed by

kfrg = krg · FM, (5)

where FM is the mobility reduction factor following the STARS model Zeng et al. [8], which is defined as

FM =
1

1 + fmmob · F1(Cs) · F2(Sw)
, (6)

where fmmob represents the reference mobility reduction factor, and Cs is the surfactant concentration.
The function F2 describes the water saturation effects and is given by

F2(Sw) =
1

2
+

arctan(epdry · (Sw − fmdry))

π
, (7)

where fmdry is the critical water saturation, and epdry represents the abruptness of the dry-out effects. F1

function introduces the surfactant concentration effects, defined as

F1(Cs) =


(

Cs

fmsurf

)epsurf

, If Cs < fmsurf,

1, If Cs ≥ fmsurf,

(8)

where fmsurf is the critical surfactant concentration and epsurf is an exponent parameter.
The fractional flow function of the aqueous phase is defined as f = uw/u, where u = uw + ug is the total

superficial velocity.
Let us consider the dimensionless temporal and spatial variables as follows

t′ =
u

(1− Swc − Sgr)ϕL
t, x′ =

x

L
, (9)
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where L is the 1D length of the reservoir and ϕ is the porous media porosity. The system of eqs. (1)-(2) is
presented with the dimensionless variables dropping out the prime symbol. The dimensionless and normalized
water saturation and surfactant concentration adopted here are

S =
Sw − Swc

1− Swc − Sgr
, C =

Cw
s

Cmax
, (10)

where Cmax is the maximum surfactant concentration.
The constant A is given by

A =
1

1− Swc − Sgr

(
Swc +

(1− ϕ)ρsK
a
d

ρwϕ

)
, (11)

where ρw and ρs are the water and rock density, respectively. Ka
d is the proportionality constant between the

surfactant concentration adsorbed on rock surfaces and the surfactant concentration injected.
We aim to present a solution for the drainage process, which we describe as a Riemann problem. In this way,

we want to obtain a solution for the system of eqs. (1)-(2) associated with the initial data in the form

(S(x, 0), C(x, 0)) =

 (SJ , CJ), if x < 0,

(SI , CI), if x ≥ 0,
(12)

where the subscripts J and I represent the injection and initial condition, respectively. We emphasize that the
system of eqs. (1)-(2) with C is constant reduces to a typical Buckley-Leverett solution.

3 Study of the Riemann problem

The system of eqs. (1)-(2) can be rewritten in the conservative form as

∂tU +A(U)∂xU = 0, (13)

where U denotes the state U = (S,C)T and A(U) is a 2× 2 upper triangular matrix, given by

A(U) =

∂Sf ∂Cf

0 f/(S +A)

 . (14)

The eigenvalues and eigenvectors associated with the matrix A are

λC = f/(S +A), rC = (∂Cf, f/(S +A)− ∂Sf)
T
, (15)

λS = ∂Sf, rS = (1, 0)T . (16)

For each fixed C, there is a unique S∗ = S∗(C) ∈ I such that

λS(S
∗, C) = λC(S

∗, C). (17)

Geometrically, the points satisfying eq. (17) are those that the secant line connecting them and (−A, 0) possesses
the same slope as the tangent of f at this point. The set of points that satisfy eq. (17) defines a curve called
transition curve and is denoted by T . We remark that in this set our system of eqs. (1)-(2) is not strictly hyperbolic.

Following the Conservation Laws Theory, see Smoller [9], the C characteristic family satisfies ∇λC ·rC = 0,
and therefore is linearly degenerate. The solutions in linearly degenerate characteristic families are called contact
discontinuities. A contact discontinuity connecting the state UL to the state UR with velocity γ satisfies the
generalized Lax’s entropy condition if

λS(UL) ≤ γ, λS(UR) ≤ γ or λS(UL) ≥ γ, λS(UR) ≥ γ. (18)

Once the contact velocity is given by γ = λC(UL) = λC(UR), we conclude that the contact discontinuity satisfies
this entropy condition when connecting states on the same side of T . We denote the solutions in the C characteristic
family by C-waves.

The S characteristic family is not degenerated and possesses solutions in the form of shock waves, rarefaction
waves, or a combination of both. If a shock connects the states UL and UR, respectively, its velocity satisfies the
Rankine-Hugoniot (RH) condition, given by

s =
f(UR)− f(UL)

SR − SL
, (19)
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where s is the shock propagation velocity. On the other hand, when a rarefaction wave connects UL and UR, its
initial velocity is given by λS(UL) and its final velocity is defined as λS(UR).

Due to the properties of the shock and rarefaction waves, together with the generalized Lax’s entropy condi-
tion (see Leveque [10] for more details), these waves keep C constant and follow the Buckley-Leverett solution.
We refer to these solutions as S-waves.

4 Solution for a Riemann problem for drainage

In this section, we present a geometric construction of the analytical solution for the system of eqs. (1)-(2)
for a drainage case. For this purpose, we use the data from Valdez et al. [11], which are listed in Table 1. The
geometric construction presented here is similar to the one made by Dindoruk and Dindoruk [12].

The drainage process is defined as the injection of the non-wetting phase, aiming to recover the wetting phase.
For a two-phase system composed of water with surfactant and gas, this process injects gas into the porous media
saturated with the wetting phase, thus forming bubbles.

For the example presented in Fig. 1, we set UL = (0.2, 0) and UR = (0.9, 0.5) as injection and initial
conditions, respectively. However, the procedure is valid for any drainage condition in which the flux curve f
possesses S-shape. As previously commented, the S-waves keep the value of C constant, implying that the value
of C only changes through a C-wave.

Figure 1. The Figure shows the left state (solid black line) and the right state fractional flow function (red solid
line). The secant line from (−A, 0) to (SL, f(UL)) (black traced line) and the secant line from (SM , f(UM ))
to (SR, f(UR)) (red dotted line). The injection stars in UL = (0.2, 0) and ends in UR = (0.9, 0.5), with the
intermediate state UM = (0.0809, 0.5).

Our solution construction is composed of a C-wave from UL to UM , followed by a S-wave from UM to UR.
The intermediate state UM is connected to UL by a contact discontinuity, with velocity

λC(UL) =
f(UL)

SL +A
=

f(UM )

SM +A
= λC(UM ). (20)

Geometrically, this velocity is the slope of the secant line that connects (SL, f(UL)), (SR, f(UR)) and (−A, 0).
Thus, the intermediate state UM is defined as the intersection of the secant line connecting (−A, 0) and (SL, f(UL))
with the function f(·, CR). This intersection happens at least in one point, once f(·, CL) ≤ f(·, CR). In the case
of more than one intersection, the generalized Lax’s entropy condition establish which state we must take as UM .

The second wave that composes our solution is an S-wave, which keeps C fixed. Accordingly, the states
UM and UR possess the same fractional flow function. Then, by Oleinik’s entropy condition Leveque [10], we
conclude that a shock wave occurs between UM and UR.

We must verify the wave compatibility, i.e., whether the wave velocities remain the same or increase. Once
our solution is composed of a contact discontinuity followed by a shock wave, we must confirm if the contact
velocity is less or equal to the shock velocity. The shock velocity that connects the states UM to UR is given by

s =
f(UR)− f(UM )

SR − SM
. (21)
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Geometrically, this velocity is the slope of the secant line through (SM , f(UM )) and (SR, f(UR)). As previously
commented, the contact velocity is the slope of the secant that connects (SL, f(UL)) and (−A, 0). To conclude
that the wave sequence is compatible, it is necessary to compare the slope of those secant lines.

The geometrical construction explained above is presented in Fig. 1. It is shown that the secant line connecting
(−A, 0) to (SL, F (UL)) (black traced line) has smaller slope than the secant line connecting (SM , f(UM )) and
(SR, f(UR)) (red pointed line). Therefore, we conclude that the wave sequence is compatible.

4.1 Comparison of analytical solution with numerical approach

To obtain a numerical solution for the system of eqs. (1)-(2) with initial data in the form of eq. (12), we
use the RCD solver Lambert et al. [13]. This solver is based on the finite differences scheme, Crank-Nicolson,
combined with Newton’s method and has second-order accuracy in space and time. The boundary condition on
the left was Dirichlet and Neumann on the right. For the spatial discretization, we used 8000 points; for the time
discretization, the time step adopted was 10−5. No artificial diffusion was added to the system.

Figure 2 presents a comparison between the analytical solution obtained in Section 4 and the numerical
solution performed by RCD. For this purpose, we use the injection condition UL = (0.2, 0) and the initial condition
UR = (0.9, 0.5) for a dimensionless time t = 0.8. As one can observe both solutions are in excellent agreement
with each other.

Figure 2. The Figure shows the comparison between the analytical solution (solid lines) an numerical approach
(traced lines) with UL = (0.2, 0) and UR = (0.9, 0.5) for dimensionless time t = 0.8. The profiles in blue
represent the water saturation and in black the surfactant concentration.

5 Conclusions

In this work, we consider a system of conversation laws that models the transport of mass water and surfactant
in the wetting phase in a porous media containing gas and water. We assume the chemical linear adsorption of
surfactant on rock surfaces. Also, we assume that the foam formation follows the local equilibrium STARS model
implemented in the commercial simulator CMG. We establish our dimensionless Riemann problem and construct a
compatible analytical solution involving fundamental waves (i.e., contact and shock waves) for a specific drainage
process. In addition, we compared our analytical solution with the numerical solver RCD, obtaining excellent
agreement between both solutions. The future scope of this work would include the complete solution to the
Riemann problem.
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Table 1. The parameters and values used to provide numerical comparison following Valdez et al. [11].

Symbol Parameter Value

k0rw End-point water relative permeability 0.302
k0rg End-point gas relative permeability 0.004
nw Corey’s exponent for water 2.98
ng Corey’s exponent for gas 0.96
µw Water viscosity 1e-03 [Pa · s]
µg Gas viscosity 5e-04 [Pa · s]
ϕ Porosity 0.21
ρw Water density 1000
ρs Solid density 2000

fmmob Mobility reduction factor 293.27
fmdry Critical water saturation 0.437
epdry Abruptness of dry out effect 359.33
Swc Water connate saturation 0.4
Sgr Gas residual saturation 0.293

fmsurf Critical surfactant concentration 2 [g/L]
epsurf Exponent that controls the stiffness of foam strength 1 [g/L]
Cmax Maximum surfactant concentration 3
Ka

d Adsorption constant 0.5
u Velocity 2.5e-05 [m/s]
L Length of the porous media 0.17 [m]
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