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Abstract.  The use of the finite element method is one of the most efficient approaches to dealing with a problem 

with non-linearity. It is common that such problems are taken to commercial engineering programs, whose main 

purpose is to obtain the stresses for the user's decision-making, without a deep focus on the methodology that 

governs such analyses. In this paper, a finite element code with non-linearity of the material was implemented in 

Python, which is a language highlighted for being an Open-Source technology. The work aims to facilitate the 

understanding of a practical application of finite elements with perfect elastoplastic behavior and, thus, to serve as 

a guide for undergraduate and graduate students interested in the subject. As a practical application, a rectangular 

steel plate was modeled and evaluated against a vertical load on one of its edges. To this end, the Von Mises yield 

criterion was used to determine the stresses and, after reaching the yield of the material, the Newton-Raphson 

iterative method was used to determine the displacements. At the end of the work, there was a good agreement 

between stresses obtained with the finite element code and the chosen commercial finite element program. 
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1  Introduction 

The finite element method is widely used to solve non-linear analysis problems. In the linear case, its 

implementation is relatively simple and well documented in the literature. In this case, the relationship between 

force and displacement is proportional and certain properties of the model, such as modulus of elasticity, remain 

constant during the analysis. However, in non-linear cases, the implementation requires an iterative process relating 

force and displacement incrementally, updating the constitutive properties of the material, until the results converge 

in successive iterations. 

Some authors may be highlighted by implementing codes in simple languages or even commercial educational 

programs of linear-elastic or elastoplastic regimes [1-3]. Tauzowski et al. [1] presented a new concept of object 

orientation in a code implemented in the Matlab program and in the C++ language, focusing on elastoplastic finite 

element analysis applied to structural topology optimization. Čermák et al. [2] proposed a more efficient and 

flexible implementation during the assembly of tangential stiffness matrices in the analysis of elastoplastic problems 

with two and three dimensions, developed in the Matlab program. Meanwhile, Cecílio and Santos [3] implemented 

a finite element code with triangular elements and quadratic interpolation in the commercial program Wolfram 

Mathematica, to help students and researchers with a better understanding and visualization of plane stress problems 

in the elastic regime.  

Therefore, this article presents a code developed in Python computational language whose didactic objective 

will be to assist its users in the visualization and resolution of analyzes of steel plates with elastoplastic behavior.     
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2  Theory of plasticity and failure criteria      

There is a linear relationship between force and displacement in linear-elastic behavior. To this end, the 

definition of ideal spring present in Hooke's Law can be extrapolated, which defines that, when a force F is imposed 

on a given spring, it will undergo a displacement, x, proportional to its stiffness, k. Therefore, in linear materials, k 

is directly proportional to its modulus of elasticity, E. 

However, in non-linear behavior, this relationship is not directly proportional, as the modulus of elasticity is 

not a constant property of the material. Thus, a tangent modulus of elasticity is calculated at each point of the stress 

vs. strain diagram of the material to obtain the respective strains and, consequently, the displacements. 

In the case of materials such as steel, whose behavior is linear throughout the elastic regime and not linear after 

the yield point, this strategy is only necessary when it enters the plastic regime, also called the non-linear regime. 

To do so, a failure criterion is necessary to verify the yield in the plate. In biaxial cases, there are several criteria, 

such as the Tresca hexagon and Von Mises failure criterion, for ductile materials, and the Mohr-Coulomb criterion, 

for brittle materials. During the development of the code, the Von Mises failure criterion was implemented, because, 

for ductile materials, it brings more accurate results than the Tresca criterion, according to Hibbeler [4]. This 

criterion establishes an expression of an elliptic curve that determines the domain of stresses in a material, as eq. 

(1): 

𝜎1
2 − 𝜎1𝜎2 + 𝜎2

2 = 𝜎𝑒
2 , 

          

(1) 

where 𝜎𝑒 is the yield stress of the material and 𝜎1 and 𝜎2 are its two principal stresses.  

Since yielding occurs in steel due to the maximum shear stress, the Von Mises yield function, described by 

Neto et al [5] and defined by eq. (2) is used. The yield stress for the pure shear state is given by 𝜅, which is a 

function of 𝜎𝑒, according to eq. (3), in addition to 𝐽2, given by eq. (4): 

𝑓(𝐽2) = 𝐽2 − √𝜅 ,   (2) 

𝜅 = 𝜎𝑒  / √3  ,   (3) 

𝐽2 = 1/6 [(𝜎𝑋 − 𝜎𝑌)2 + 𝜎𝑋
2 + 𝜎𝑌

2] + 𝜏𝑋𝑌
2  ,   (4) 

where  𝜎𝑋, 𝜎𝑌 e 𝜏𝑋𝑌 are the normal and shear stresses acting on the material. Therefore, when eq. (2) has a positive 

value, the stresses will be in a linear-elastic regime and within the Von Mises domain. Otherwise, the plate will 

fail, and the stresses will have to be recalculated in such a way that J2 =  √𝜅, in other words, the stresses are in the 

contour of the ellipse, which will happen during the material yield. 

3  Finite element approach to elastoplastic behavior 

Elastoplastic behavior is characterized by a non-linear relationship between external force and nodal 

displacement. Therefore, a strategy used to approach this type of problem is to obtain the internal force in an 

incremental way. For this, a tangent stiffness matrix, 𝐊𝑖, which relates an increment of internal force and 

displacement at each step i, is evaluated according to eq. (5). The deformation matrix B, which contains the 

derivatives of the shape functions, responsible for interpolating the coordinates and displacements of the element, 

and the constitutive matrix of the material, C, are used to obtain 𝐊𝑖. This relationship is described in eq. (6). 

𝜟𝑭𝑖 = 𝑲𝑖𝑫𝑖  ,    (5) 

𝑲𝑖 = ∫ 𝑩𝑇 𝑪 𝑩 𝑑𝑉 .    (6) 

In order to obtain the displacements with a lower computational cost, Borst et al. [6] propose to use the Newton-

Raphson iterative method. For this purpose, force is applied in small increments. The process is illustrated in Fig. 

1. 
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Figure 1. Procedure for iterative-incremental solution.  

At each step, the system is incremented by a portion ∆𝐅𝐞𝐱𝐭, ratio of the total external force, 𝐅𝐞𝐱𝐭, by the number 

of steps adopted, n. For each increment of force, the displacement solution is obtained iteratively until a tolerance 

pre-established by the user is met. Thus, at each step i and sub-step j, there will be a force residue, 𝐫𝑖,𝑗, given by eq. 

(7). 𝐅𝑖
𝐞𝐱𝐭 and 𝐅𝑗

𝐢𝐧𝐭 represent, respectively, the external force accumulated until step i and the internal force 

corresponding to all degrees of freedom of the model analyzed in step i and sub-step j. Thus, when updating the 

internal force 𝐅𝑗
𝐢𝐧𝐭, a respective dD will be obtained at each sub-step. This process is terminated when 𝐫𝑖,𝑗  reaches 

a value smaller than the stipulated tolerance. 

𝒓𝑖,𝑗 = 𝑭𝑖
𝒆𝒙𝒕 − 𝑭𝑖

𝒊𝒏𝒕 .    (7) 

The internal force is dependent on the initial values of assigned nodal displacements. Within the element, such 

force is described according to eq. (8) and is a function of the vector of the principal stress components of this step, 
𝛔𝑖,𝑗 . From the point of view of the model as a whole, the global internal force of the problem is obtained through 

the sum of the internal force found in each element, mapping the location of its nodes, and classifying them as 

global nodes of the structure. 

𝑭𝑖,𝑗
𝒆,𝒊𝒏𝒕 = ∫ 𝑩𝑇𝝈𝑖,𝑗𝑑𝑉 .    (8) 

Thus, the displacement corrections at each step are given by eq. (9), where 𝑛𝑖 is the number of sub-steps 

necessary for 𝐅𝑖,𝑗
𝐢𝐧𝐭 to converge, approaching 𝐅𝑖

𝐞𝐱𝐭 as much as possible. This occurs because, as the displacements 

increase at each sub-step j, the stresses increase proportionally and, consequently, the internal force tends to increase 

and approach the value of the external force, which causes the convergence of displacements. These displacements, 

now properly corrected, are described in eq. (10).  

𝒓𝑖,𝑗 = 𝑲𝑖  ∑ 𝒅𝑫𝑖,𝑗

𝑛𝑖

𝑖=1

 ,    (9) 

𝑫𝑖 = 𝑫𝑖−1 + 𝒅𝑫𝑗  .  (10) 

After correction and convergence in the displacement values, we proceed to obtain the stresses. For this purpose, 

an elastoplastic constitutive matrix is calculated which, unlike that found in the linear regime, is not constant. 

According to Chen and Han [7], each term in this matrix is expressed as eq. (11): 

𝐶𝑖𝑗𝑘𝑙
𝑒𝑝

= 𝐶𝑖𝑗𝑘𝑙
𝑒𝑙 −

𝐶𝑖𝑗𝑚𝑛
𝑒𝑙 𝜕𝑓

𝜕𝜎𝑚𝑛

𝜕𝑓

𝜕𝜎𝑝𝑞
𝐶𝑝𝑞𝑘𝑙

𝑒𝑙

𝜕𝑓

𝜕𝜎𝑟𝑠
𝐶𝑟𝑠𝑡𝑢

𝑒𝑙 𝜕𝑓

𝜕𝜎𝑡𝑢

 , 

 

    (11) 

where 𝐂𝐞𝐥 is the matrix of components of the elastic constitutive matrix and 𝛛𝐟/𝛛𝛔 is the vector of derivatives of 
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the Von Mises yield function (eq. (4)) with respect to the components of material stress, which in turn are given by 

eq. (12), where C is the elastoplastic constitutive matrix, if the material has yielded, and elastic, otherwise. 

𝝈 = 𝑪 𝑩 𝑫 .     (12) 

Once the stresses are obtained, the material yielding must be verified by the Von Mises criterion and, if this 

occurs, an algorithm is used to correct the stresses in such a way that the yield function, described in eq. (2), provide 

values within the adopted tolerance. This update is done with a relationship of the invariant of the stress deviator 

tensor and the mean stress tensor given in eq. (13): 

𝝈𝑖 =
𝜅

𝜅𝑡𝑒𝑠𝑡𝑒

 (𝝈𝒆 − 𝝈𝒎
𝒆 ) + 𝝈𝒎

𝒆 =
𝜅

√𝐽2

(𝝈𝒆 − 𝝈𝒎
𝒆 ) + 𝝈𝒎

𝒆  ,     (13) 

where 𝛔𝐦
𝐞  is the mean stress tensor and (𝛔𝐞 − 𝝈𝐦

𝐞 ) denoting the deviation matrix of the stress tensor. This function 

guarantees that the stresses are on the boundary of the ellipse of the von Mises criterion, which in turn corresponds 

to the yielding of a ductile material. 

4  Numerical simulation 

The code was developed from a data input file where the user necessarily defines a rectangular geometry. 

Therefore, the analyzes involved are limited to simulations of plates with 4 vertices and, consequently, 4 parallel 

edges. From this geometry, the finite element mesh with quadrilateral elements is automatically generated and the 

type of interpolation of the problem can be chosen: linear or quadratic. The boundary conditions, including loads 

and supports, are defined by the user in this same file, as well as the material parameters. 

As a numerical example, a plate fixed on one edge was modeled, with a thickness of 1mm, width 48mm and 

height 44mm, subjected to a vertical load of magnitude 4,620N, applied in 4 increments, on the edge opposite the 

fixed end. The plate material is SAE 1045 steel, modulus of elasticity 206GPa, yield stress 450MPa and Poisson's 

ratio 0.3. To generate the mesh, it was decided to adopt 12 elements in the horizontal direction and 11 in the vertical 

one, totaling 132 elements with 4mm edges, as illustrated in Fig. (2). 

The program is then executed and, as post-processing, the discretization of the model is provided, as well as its 

undeformed and deformed configuration, with proper global number nodes, as shown in Fig. (3.a) and (3.b), 

respectively. In addition, the same model was developed in the Abaqus finite element program to compare its results 

with the data outputs of the numerical analysis developed. Such comparisons can be found in Table 1, in which the 

respective root of the failure criterion 𝐽2 is indicated for each step in both evaluations, as well as the error involved 

during this analysis. 

 

                                           

 

 

                          

 

 

Figure 2. Numerical model under study (units in mm). 
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                                                 (a)                            (b) 

Table 1. Results comparison 

 Step 1 Step 2 Step 3 Step 4 

√𝐽2, python [MPa]  114.3 228.7 232.9 252.5 

√𝐽2, abaqus [MPa] 114.3 228.7 259.8 259.8 

Error 0.0% 0.0% 10.4% 2.8% 

5  Conclusions 

During the present study, it was sought to develop a didactic finite element code, capable of evaluating 

elastoplastic models of steel plates with various geometries and loads, in such a way that its user can visualize 

relevant steps of these stress analyses, such as for example the use of the von Mises criterion and the Newton-

Raphson iterative method. In the end, the results of the incremental application of forces were given as a function 

of 𝐽2, calculated through the acting normal and shear stresses (eq. (4)). The comparison of these values with those 

provided by the commercial program Abaqus was satisfactory, since there was a maximum error of only 10.4%, 

based on the parameters of the commercial program. For future work, it is expected some adaptations in the code 

to allow the adoption of cracked plate models, whose behavior is governed by the elastic-plastic fracture mechanics. 
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