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Abstract. Steel piles are deep foundation elements that are mostly used in multi-storey buildings, 

transmission towers and industrial constructions. It is a structural element that is industrially produced, with 

laminated or welded steel profiles, single or multiple layer, pipe bending or calendered sheet metal tubes, weld 

seam or seamless tubes and railway tracks. By the use of reduced cross-sectional area of piles in Brazil, especially 

thinner steel piles (profile I or simple rails) that cross thick soft clay layers, it is considered the risk of pile buckling, 

even with fully embedded piles. This work evaluates the critical buckling load of a steel pile in a soft clayed soil 

using analytical and numerical methods. A comparison between the critical load test result obtained using these 

methods and the allowable load provided by the pile manufacturer is made. There are differences between the 

methods mostly due to the limitation on top of the pile. Therefore to verify the critical buckling load on a 

foundation project, the suitable method should be the one most resembling the real situation acting on the structure. 
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1  Introduction 

Steel piles are used for more than 120 years because they have high durability and are considered quite 

effective on a foundation project.  

According to NBR 6122 (ABNT, 2019) [1], steel piles must be dimensioned in accordance with NBR 8800 

(ABNT, 2008) [2]. It is also necessary to check if piles will not fail by buckling when the piles have their 

compressive strength above ground level, considering possible erosion (when there is water flow), or if the soil is 

too soft. 

As a relevant example for bucking analysis, Cabral (2016) [3] mentions the collapse of a residential building 

in Belém (PA) in 1987 with 39 victims. According to Cabral (2016) [3], after the investigation, the technical report 

concluded that the cause of the accident was the slow rheological behavior of buckling of the pillar-pile set. The 

rheological characteristics of buckling were related to a soft organic clay deposit in the site. 

Another important aspect is that during pile execution there may be some subtle deviations and lateral 

displacements on the pile axis. These deviations significantly increase the risk of buckling. Thus, the engineers 

charged with the responsibility for the execution must be careful, in a detailed executive control, minimizing 

problems and deviations from pile alignment in order to reduce the risks of foundation failure (Danziger and Lopes, 

2021 [4]). 

This article evaluates the critical buckling load of a steel H-pile in soft clay using analytical and numerical 

methods (finite element program SAP2000 – version 22 [5]). 
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2  Main Analytical Methods Proposed to Estimate the Critical Buckling Load 

2.1 Method of Timoshenko and Gere (1961) 

Timoshenko and Gere (1961) [6] assume that reaction forces at any cross section of the pile are proportional 

to the deflection at that point. Therefore, there is a soil reaction coefficient, 𝐾ℎ, expressed by: 𝐾ℎ = 𝑘ℎ𝐵, where B 

is the pile width.                                                                                                                                                                                               

This solution is developed through the energy method. The critical load is given by: 

 

 𝑄 =
𝜋2𝐸𝑝𝐼

𝐿2 (𝑚2 +
𝐾ℎ𝐿4

𝑚2𝜋4𝐸𝑝𝐼
) (1) 

 

Where m is an integer that represents the amount of sine half-waves into which the pile is subdivided in 

buckling, 𝐸𝑝𝐼 is the pile flexural stiffness and L is the pile length.  

For the free pile, 𝐾ℎ = 0, and (1) the value m=1 must be assumed. And the equation is reduced: 

 

 𝑄𝑐𝑟 =
𝜋2𝐸𝑝𝐼

𝐿2  (2)                                                                                                               

2.2 Whitaker’s Simplified Approach (1957)  

Based on Timoshenko’s work, Whitaker (1957) [7] assumes that the critical buckling load would be: 

 

 𝑄𝑐𝑟 = 𝑄𝐸𝑢𝑙𝑒𝑟 (𝑛2 +
𝐿′

𝑛2) (3) 

Where: 

𝑄𝐸𝑢𝑙𝑒𝑟 = Euler’s critical load, given by 𝑄𝐸𝑢𝑙𝑒𝑟 =
𝜋2∙𝐸𝑝𝐼

𝐿2 . 

𝑛 = integer number representing the number of sinusoidal half-waves when buckling occurs. 

 

Being: 

 𝐿′ =
𝐾ℎ𝐿4

𝜋4𝐸𝑝𝐼
 (4) 

 

Following Whitaker (1957) [7], the buckling load is not determined by the pile length, instead the lateral 

reaction coefficient of the soil and the flexural stiffness of the pile play this role. 

2.3 Bergfelt’s Expression (1957) 

Bergfelt (1957) [8] developed his theoretical research based on the equation of beams on elastic foundations 

performing a large number of tests in piles of different materials and dimensions. 

Considering the results obtained, the most interesting one points that pile load tests were failed. Specifically 

in this study there is a linear relationship between the critical pile load and the undrained shear strength of clay 

(𝑆𝑢) and, then, the empirical expression was developed: 

 

 𝑄𝑐𝑟 = 8 𝑎 10√𝑆𝑢𝐸𝐼 (5) 

Where: 

EI = pile flexural stiffness. 

2.4 Van Langendonck’s Solution (1957) 

Based on his studies of buckling of stakes and partially embedded piles, Van Langendonck (1957) [9] 

obtained an abacus and eq. 6, 7 and 8. The value of ko is used to determine the value of c through the abacus using 
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this method. After the determination of this value, it is possible to calculate the buckling length and the critical 

load of pile. 

 

 𝑄𝑓𝑙 =
𝑐2𝐸𝑝𝐼

𝐿²
=

𝜋2𝐸𝑝𝐼

𝐿𝑓𝑙²
 (6) 

 

  𝐿𝑓𝑙 =
𝜋

𝑐
𝐿 (7) 

 

  𝑘0 =
𝐿

5
√

𝑘ℎ𝐵

𝐸𝑝𝐼

4
 (8) 

 

Where: 

𝐿 = Pile length.  

𝐼 = Moment of inertia of a pile group. 

𝐵 = Pile diameter or width. 

𝑘ℎ = Horizontal subgrade reaction coefficient (dimension 𝐹𝐿−3). 

𝐸𝑝 = Modulus of elasticity in pile material. 

2.5 Contribution of Davisson and Robinson (1965) 

Davisson and Robinson (1965) [10] proposed a method to calculate the critical load and to verify the buckling 

of piles. This method compares partially embedded piles and simply-supported beam, presenting the same 

displacement yt or the same critical buckling load. Thus, with the free length of the pile Lu added the length Ls the 

result is the length of simply-supported beam, Le, as shown in Fig. 1. 

 

Figure 1. Partially embedded pile 

 

Since the horizontal reaction coefficient is equal to zero from the top pile surface to the ground surface, two 

cases must be analyzed according to the authors. The first one takes the modulus of horizontal reaction as constant 

or as growing linearly with depth following the second hypothesis. 

For the first case, where 𝐾ℎ  = constant, the differential equation of a beam on elastic foundation, represented 

in eq. 9, is written in 11 considering the quantities in eq. 10. 

 

  𝐸𝑝𝐼 
𝑑4𝑦

𝑑𝑧4 + 𝑉1
𝑑²𝑦

𝑑𝑧²
+ 𝐾ℎ𝑦 = 0 (9) 
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 𝑅 = √
𝐸𝑝𝐼

𝐾ℎ

4
, 𝐿 =

𝑧

𝑅
     𝑎𝑛𝑑   𝑈 =

𝑉𝑡𝑅2

𝐸𝑃𝐼
 (10) 

 

   
𝑑4𝑦

𝑑𝐿4 + 𝑈
𝑑2𝑦

𝑑𝐿2 + 𝑦 = 0 (11) 

 

The following dimensionless quantities are introduced as well: 

 

  𝐿𝑚á𝑥 =
𝐿

𝑅
, 𝑆𝑅 =

𝐿𝑠

𝑅
, 𝐽𝑅 =

𝐿𝑢

𝑅
 (12) 

 

The equivalent length is given by 𝐿𝑒 = (𝑆𝑅 + 𝐽𝑅)𝑅. 

 

Buckling and bending coefficients can be presented graphically. The critical buckling load is expressed as: 

 

  𝑉𝑐𝑟𝑖𝑡 =
𝜋2𝐸𝑝𝐼

4𝑅²(𝑆𝑅+𝐽𝑅)²
 (13) 

 

For the second case, 𝐾ℎ = 𝑛ℎ𝑧: 

 

   𝑇 = √
𝐸𝑝𝐼

𝑛ℎ

5
, 𝑍 =

𝑧

𝑇
     𝑎𝑛𝑑   𝑉 =

𝑉𝑡𝑇2

𝐸𝑃𝐼
 (14) 

 

     
𝑑4𝑦

𝑑𝑍4 + 𝑉
𝑑2𝑦

𝑑𝑍2 + 𝑍𝑦 = 0 (15) 

 

The following nondimensional quantities are also introduced: 

 

   𝑍𝑚á𝑥 =
𝐿

𝑇
, 𝑆𝑇 =

𝐿𝑠

𝑇
, 𝐽𝑡 =

𝐿𝑢

𝑇
 (16) 

2.6 Solution in Theory of Elasticity (1980) 

According to Poulos and Davis' Theory of Elasticity (1980) [11], the critical load value depends on the value 

of the pile-stiffness factor, given by: 

   𝐾 =
𝐸𝑝

𝐸𝑠
𝑅𝐴 (17) 

Where 𝑅𝐴 is the ratio of an area of pile section 𝐴𝑝 to the area bounded by the pile outer-circumference: 

 

   𝑅𝐴 =
𝐴𝑝

𝜋𝑑𝑒𝑥𝑡
2

4

 (18) 

The buckling load 𝑄𝑐𝑟  is expressed considering Euler’s critical load and is in the abacus which have the factor 

𝐾𝑅 as entry parameter, given by: 

 

  𝐾𝑅 =
𝐸𝑝𝐼𝑝

𝐸𝑠𝐿4 (19) 

3  Numeric Method 

The discretization by finite elements was performed in this study using the Structural Analysis SAP2000 – 

version 22. This is the environment for the software SAP2000, a program for linear and non-linear structural and 

dynamic analysis capable of solving simple static 2D models and high complexity 3D models. 



P. A. P. Martins, J. C. Gonçalves 

CILAMCE-2022 
Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu, Brazil, November 21-25, 2022 

 

4  Critical Buckling Load Estimation 

Aiming to evaluate the critical buckling load through the methods presented above, a hypothetical case is 

studied trying to show some values found in foundation projects for real constructions. Thus, a steel H-pile 310 x 

125 length of 42 meters was considered, fully embedded, surrounded by a thick organic clay layer with undrained 

shear strength values, Su, equal to 20 kPa and subgrade reaction coefficient, Kh, equal to 200 kN/m² constant with 

depth. The cross section shape profile is demonstrated in Fig. 2. 

 

 
Figure 2. Cross section area HP 310 x 125 

 

Based on Gerdau Steel Piles Guide, A = 159 cm², Ixx =27706 cm⁴  and Iyy = 8823 cm⁴  are obtained. After 

deduction of sacrificial steel thickness of 1.5 mm (organic clay), there are A = 132 cm², Ixx = 22452 cm⁴  and Iyy 

= 7091 cm⁴ . The smallest moment of inertia is I = 7091 cm⁴ . The pile steel, ASTM A572 (Grade 50), has a 

modulus of elasticity of E = 200,000 MPa. The pile is modeled in SAP2000 using frame elements. A linear 

buckling analysis is performed for a 3D model. Nonlinear buckling is not investigated in this paper. The properties 

of A572 - Grade 50 steel are considered, following the references of the program, as shown in Fig. 3. 

 

 
Figure 3. Material properties 
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The soil is simulated by independent linear elastic springs evenly spaced every 1 m, based on Winkler model 

(boundary conditions). The coefficients representing the springs can be obtained through the following expression 

(20): 

 

  𝐾𝑖 = 𝑘 ∙ 𝐴𝑖 (20) 

Where: 

𝐾𝑖 =Relative stiffness relating to node i;  

𝑘 = soil reaction coefficient;  

𝐴𝑖 = area of influence of node i, pile diameter multiplied by the distance of the nodes; 𝐴𝑖 = 𝐵𝑙. 
 

Taking into account the equation of the modulus of horizontal soil reaction, 𝐾𝐻 = 𝑘ℎ𝐵, and the model 

discretization that occurs every 1 meter, it can be noticed that the value 𝐾𝑖 assumes the value of 𝐾𝐻. The springs 

are applied in both x and y directions and the pile base was considered fixed in a second order support. 

Simulation results are expressed in Fig. 4, which presents a critical load value equivalent to 𝑄𝑐𝑟 = 1976 kN. 

 

 
Figure 4. Result for critical buckling load from FEM 

 

The results obtained by some of the methods studied are shown in Fig. 5. It is crucial to observe that critical 

load values include the global safety factor established by NBR 6122 (2019) [1]. 

 

 
Figure 5. Critical buckling load obtained by each method and allowable load 

 

It is possible to see in Fig. 5 that the methods approached here present critical buckling load value lower than 

the allowable load given by Gerdau Steel Piles Guide (2946 kN). The solutions proposed by Van Langendonck, 

Davisson and Robinson and obtained by the Finite Element Method (FEM), provided by the SAP2000 structural 

calculation program, are different from others. In fact, such solutions were developed based on the assumption that 
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the pile was fully embedded. In these analyses, the free length of pile was considered equal to zero. If there is a 

limitation on top of the pile, critical buckling load value tends to increase significantly. The variation between the 

solution using the FEM and the Van Langendonk solution, the one presenting lower results, was approximately 

17%. The difference between the Theory of Elasticity solution (the highest critical buckling load obtained) and the 

solution using the FEM was around 42%. It is important to mention that the results calculated using the methods 

developed by Timoshenko and Gere and also Whitaker considered the stake labeled in pile caps. The variation 

between these two methods was less than 1%. Little difference is found between the results of these methods 

because Whitaker's approach is based on the solution presented by Timoshenko and Gere. Regarding the method 

employed by Bergfelt and the Theory of Elasticity solution, both presenting greater values of critical buckling 

load, the variation was approximately 10%. 

5  Conclusions 

The following conclusions can be drawn: (i) The critical buckling load analysis for fully embedded piles is 

often neglected, except in cases prescribed in the standard. Nevertheless, cases about steel piles that suffered failure 

due to buckling are still lacking in the literature. (ii) The methods approached in this study present critical buckling 

load value lower than the allowable load given by Gerdau. (iii) The solutions proposed by Van Langendonck, 

Davisson and Robinson and obtained by the Finite Element Method (FEM), provided by the SAP2000 structural 

calculation program, are different from others. In fact, such solutions were developed based on the assumption that 

the pile was fully embedded. In these analyses, the free length of pile was considered equal to zero. If there is a 

limitation on top of the pile, critical buckling load value tends to increase significantly. (iv) The variation between 

the solution using the FEM and the Van Langendonk solution, the one presenting lower results, was approximately 

17%. The difference between the Theory of Elasticity solution (the highest critical buckling load obtained) and the 

solution using the FEM was around 42%. (v) It is important to mention that the results calculated using the methods 

developed by Timoshenko and Gere and also Whitaker considered the stake labeled in pile caps. The variation 

between these two methods was less than 1%. Little difference is found between the results of these methods 

because Whitaker's approach is based on the solution presented by Timoshenko and Gere. (vi) Regarding the 

method employed by Bergfelt and the Theory of Elasticity solution, both presenting greater values of critical 

buckling load, the variation was approximately 10%. (vii) The methods that were proposed here allow the 

estimation of the critical buckling load of piles in soils with low strength properties. However, considering the 

different ways to analyse buckling, the suitable method should be the one most resembling the real situation acting 

on the structure. 
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