
Mesh generation and manipulation for finite difference method usage

Pedro Zaffalon da Silva1, Neyva Maria Lopes Romeiro2, Rafael Furlanetto Casamaximo1, Iury Pereira de Souza,1,
Paulo Laerte Natti2

1Dept. of Computer Science, State University of Londrina
Rodovia Celso Garcia Cid - PR 445 Km 380, 86.057-970, Paraná/Londrina, Brasil
pedro.zaffalon@uel.br, rafael.furlanetto@uel.br, iury.pereira.souza@uel.br
2Dept. of Math, State University of Londrina
Rodovia Celso Garcia Cid - PR 445 Km 380, 86.057-970, Paraná/Londrina, Brasil
nromeiro@uel.br, plnatti@uel.br

Abstract. This work proposes a rectangular mesh generator software which discretize complex geometries, al-
lowing computational fluids dynamics (CFD) simulations. To this porpuse, the software uses different image pro-
cessing and data analysis techniques to extract a finite set of points that describe the image contour. The resulting
coordinates represents the maximum refinement, describing each pixel from the image contour. Hence, procedures
with meshs would require high cost of memory. For this reason, the software approximate the coordinates to mesh
nodes, compliant with the mesh size selected by the user, allowing a efficient contour description with low memory
cost. Then, the approximate contour mesh is obtained, which can be used as parameters to numerical simulations
of partial differential equations using the finite difference method. Also, the software allows selection of regions
from the geometry to contain more nodes than the rest of the mesh, creating sparse meshs, resulting in better re-
finement using less memory. Finally, the obtained meshs are compared with the original coordinates by their area,
ensuring the mesh generation efficiency.

Keywords: Image processing, mesh nodes, finite difference.

1 Introduction

The computational mesh consists of the discretized representation of a physical domain, described through
a given contour, limited by edges or faces, containing vertices called nodes. The mesh is mainly used in mod-
elling and simulations by manipulating differential equations, an essential tool for the analysis and mathematical
description of several phenomena. As the vast majority of differential equations do not have an analytical solution,
numerical methods are used for their resolution, making it necessary to know information about the geometry of
the medium investigated through the computational mesh.

However, in modelling natural phenomena, the domain where the boundary conditions of the problem are
defined is hardly found under the nodes of the computational mesh Cuminato and Meneguette [1]. Thus, Cartesian
meshes in a two-dimensional plane find it challenging to prescribe boundary conditions in non-regular domains.
This makes it difficult to solve the problem considering, for example, the finite difference method Othechar [2]. On
the other hand, discretizations using Cartesian meshes are attractive due to their efficiency and low memory usage
Fernández-Fidalgo et al. [3]. To avoid this problem, several authors employ methods that use algebraic polynomial
interpolations to construct the difference equations at the points of the given contour, allowing the incorporation of
the irregular contour into the method, that is, all calculations on irregular domains are reduced to regular domains,
obtaining thus a more precise numerical solution to the problem Othechar [2], Jomaa and Macaskill [4], Fukuchi
[5], Codina and Baiges [6].

In this context, it is proposed the development of a software called Context, using the Python programming
language Rossum and Guido [7], to generate meshes representing the contour of geometry present in an image. The
extraction of the coordinates of the pixels of the contour of a certain object in the image, using techniques of digital
image processing and the algorithm Moore Neighborhood Weisstein and W [8], was presented in Casamaximo
et al. [9]. In this work, the process of transforming the set of pixels coordinates into a mesh is described, by
approximating the points to mesh nodes. In this way, the software allows obtaining a discretized representation of a
physical domain present in an image, allowing the application of computational fluid dynamics (DFC) simulations.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Foz do Iguaçu, Brazil, November 21-25, 2022



Mesh generation and manipulation for finite difference method usage

Also, the possibility of generating sparse meshes is presented. With this option, you can select specific mesh
regions to have a greater number of nodes than the rest. Thus, images with regions with greater discretization
complexity can be better represented without increasing the number of nodes in the entire mesh. Consequently,
better results are obtained in applying the finite difference method and better memory utilization.

2 Development

For the development of the software, the Python programming language [7] was used together with the
OpenCV library [10], which allows manipulations for the image processing, data and treatment functions. The
Click library [7] was used to manage the command line tools, and the Tkinter framework [7] for the development
of the graphical interface (GUI). The developed software has three different executables: context, contextMesh,
and contextSparseMesh, responsible, respectively, for contour extraction, mesh generation and generation of sparse
or adaptive meshes.

2.1 Contour extraction

As described in Casamaximo et al. [9], this part of the software has the function of extracting the contour
of a geometry present in an image through image processing techniques. This result is achieved through two
functionalities offered by the executable, being necessary first to extract the mask from the image and then obtain
the contour. These processes are illustrated in Figure 1 using the image of a tomography Figure 1a), provided by
the patient who developed breast cancer, where the tumour is highlighted at the top of the image. The image mask,
Figure 1b) is a conversion of the pixels that form the original image into two colours, black and white, through
conditions defined by the user, which can vary for each image, according to the HSV parameters. In this context,
the software offers a graphical interface that allows the user to insert an image and choose the necessary parameters
to adjust better and extract the mask. To obtain the contour of the breast, Figure 1c), the Moore Neighborhood
Weisstein and W [8] algorithm is applied to the image mask. This algorithm acts on a matrix using the colour of
the points to differentiate between the contour and fill of images whose colours are binary, black and white. In this
step, the software offers options to manipulate the contour scale, allowing changing the width and height values of
the set of pixels, in addition to the displacement of the X axis and the Y axis from the origin of the points.

a) b) c)

Figure 1. Example of contour extraction: a) original image, b) mask, c) contour plot, in red, in Octave.

2.2 Mesh generation

For the mesh generation, the pixel set, obtained in Figure 1c), can be considered mesh nodes, however, the
mesh size would be equal to the image resolution, making its use unfeasible due to the high computational cost.
In this context, this executable aims to return an approximate contour, that is, a set of coordinates representing the
image contour in nodes of a mesh with user-defined numbers of partitions. Thus, a mesh is defined starting from
the rectangular domain R = [x0, x f ] × [y0, y f ], with partitions Ni and N j, in the directions y and z, respectively,
where dx = (x f − x0)/N j and dy = (y f − y0)/Ni are the edge sizes (distance between neighboring nodes) on each
axis. Figure 2 shows the results of two meshes generated considering Ni = N j = 50 and Ni = N j = 100. A mesh
zoom is illustrated in Figure 2, where the contour obtained by the executable, in blue, and the contour extracted
from the image, in red, are shown in Figure 2c), noting that the software managed to generate an outline close to
the image in Figure 1c).

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Foz do Iguaçu, Brazil, November 21-25, 2022



P.Z. Silva, N.M.L. Romeiro, R.F. Casamaximo

a) b) c)

Figure 2. Examples of meshes generated with highlighted zoom: a) mesh with Ni = N j = 50, b) and c) mesh with
Ni = N j = 100

In this way, using the sets of pixel coordinates resulting from the extraction of coordinates, Figure 1c), it is
possible to form an approximate representation of the geometry contour under the mesh nodes, as shown in Figure
2a)-c). The mesh generation process is described in Algorithm 1.

Algorithm 1: Mesh generation
Input: A vector v of pixel coordinates (x,y) of the contour, function getNode that returns the mesh node in which the pixel is contained.
Output: A linked list list containing the coordinates of mesh nodes that form the contour.

1 begin
2 Create variable previousPt, assign to it the return of getNode with respect to v0, and add it to list;
3 Create f lagx and f lagy variables and assign f also to them;
4 Create variables dirx and diry and assign difference between the values of x and y of the first and last point of v to them;
5 for i← 1 to vector size v−1 do
6 Create variable currentPt and assign to it the return of getNode with respect to vi;
7 if currentPtx != previousPtx or currentPty != previousPty then
8 if f lagx e currentPty != previousPty and ((currentPtx > previousPtx) != diry) then
9 Replace last node of list with currentPt;

10 else if f lagy and currentPtx != previousPtx and ((currentPty > previousPty) == dirx) then
11 Replace last node of list with currentPt;
12 else if f lagy and currentPty != previousPty and ((currentPtx > previousPtx) != dirx) then
13 Replace last node of list with currentPt;
14 else if f lagx and currentPtx != previousPtx and ((currentPty > previousPty) != diry) then
15 Replace last node of list with currentPt;
16 else
17 Add currentPt to list;
18 Create ptAuxiliar variable and assign the penultimate node of list to it;
19 f lagx = currentPtx == ptAtuxiliarx;
20 f lagy = currentPty == ptAtuxiliary;
21 dirx = currentPtx > ptAtuxiliarx;
22 diry = currentPty > ptAtuxiliary;
23 previousPt = currentPt;
24 end
25 end
26 end

The function getNode, used in the Algorithm 1, is responsible for approximating a pixel point to a node. In
this function the coordinates of the approximate node is calculated, being x = floor((pointx - xmin)/dx) * dx + x0
and y = floor((pointy - ymin)/dy) * dy + y0.

The contour coordinates are traversed and associated with a given mesh node to generate the mesh. After each
pixel is approximated, the node is added to the approximate contour if it is not repeated or redundant. Redundant
nodes are not adjacent to a node outside the image. Therefore, in addition to not adding extra information to the
contour, it decreases the area and number of internal nodes of the geometry. To remove them without affecting
other nodes, it is necessary to inform whether the set of pixels is ordered clockwise or counterclockwise. The
contour extracted from Figure 1 can be obtained in both directions. If the pixels are passed counterclockwise,
the vector will be inverted. Consequently, the Algorithm input 1 and the resulting approximate contour will be
clockwise.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Foz do Iguaçu, Brazil, November 21-25, 2022



Mesh generation and manipulation for finite difference method usage

2.3 Sparse meshes

Similarly, as described in the 2.2 subsection, this part of the software aims to generate an approximate repre-
sentation in mesh nodes of the contour extracted from an image. However, this executable returns the approximate
contour formed in relation to a sparse mesh, which consists of a mesh containing regions with different dx and
dy, that is, regions with dx/2p and dy/2p, for p = 0,1,2, . . . , depending on the refinement desired by the user,
thus forming sub-meshes with eigenvalues of dx, dy, Ni and N j. This executable results in regions with the high-
est number of nodes compared to the rest of the mesh. Figure 3a)-c) illustrate this procedure, where the region
selected for mesh refinement refers to the upper part of the breast, which contains the tumour, as can be seen in
the mammogram shown in Figure 1a). Finally, it also presents a zoom of the mesh highlighting the regions with
different dx and dy in Figure 3c) the given and approximate contours, in blue and red, respectively.

a) b) c)

Figure 3. Examples of sparse meshes: a) mesh with Ni = N j = 50, the sub-mesh partitions being Ni = 37 and
N j = 53, b) and c) mesh with Nx = Ny = 100 being the sub-mesh partitions Ni = 75 and N j = 105

.

Due to the variation of dx and dy, the mesh definition and the values provided are informed through a separate
text file, where each line consists of the definition of a region as if defining a set of sub- meshes. The first line
must be in the format Nx Ny x0 y0 x f y f and enclose all regions defined afterwards. The other lines must be in
the format Ndx Ndy x0 y0 x f y f , and in this area the values of dx and dy will be the values of dx and dy defined
from the first line divided by Ndx and Ndy. Therefore, the different values of dx and dy must be proportional. The
process for generating sparse meshes occurs in the same way as shown in Algorithm 1, with the difference that the
approximation is performed as described in Algorithm 2.

Algorithm 2: getNode for sparse mesh
Input: A point pt, a list of mesh areas areas.
Output: A node coordinate node.

1 begin
2 for i← size of areas - 1 to 0 by −1 do
3 Create variable area and assign areasi to it;
4 if areax0 <= ptx <= areax f e areay0 <= pty <= areay f then
5 nodex = floor((ptx - areax0 )/areadx) * areadx + areax0 );
6 nodey = floor((pty - areay0 )/aready) * aready + areay0 );
7 break;
8 end
9 end

10 end

Thus, the contextSparseMesh executable becomes appropriate considering the context of the application of
numerical simulations, in which the geometry needs to be refined in certain regions. An example would be studies
of breast cancer tumor growth with the finite difference technique using Figure 1a), in which greater refinement
in the region close to the tumor can generate a more realistic tumor contour, consequently better results, with less
memory usage, without affecting the quality of the mesh elements, as can be seen in the zoom shown in Figure 3.
However, its use implies greater complexity in implementing the finite difference method due to the abstractions
necessary to deal with sub-mesh boundary regions. Also, due to the implementation complexity, the execution is
slower. However, this complexity is mitigated by the smaller number of nodes in a fully refined mesh.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Foz do Iguaçu, Brazil, November 21-25, 2022



P.Z. Silva, N.M.L. Romeiro, R.F. Casamaximo

Adaptive meshes

The software also offers the option of generating adaptive meshes instead of sparse meshes. With this option,
nodes above or below a sub-mesh are selected, but with the value of y within the region’s limits, they present dx
equal to the present in the sub-mesh. Similarly, left or right nodes, but with x within the range, have the value of
dx equal to the sub-mesh. This way, it is possible to form a region in the more refined mesh without changing
its structure, as illustrated in Figure 4. During the generation of the meshes present in Figures 4a) and 4b), they
were initially defined with Ni = N j = 50 and Ni = N j = 100 respectively. However, due to the process performed to
increase the refinement in regions close to the tumour, they present a greater number of Ni and N j.

a) b) c)

Figure 4. Examples of adaptive meshes: a) mesh with Ni =68 and N j =76, b) and c) mesh with Ni =137 and
N j =152.

For its creation, two vectors vx and vy are generated from the information present in the definitions of each
sub-mesh. These vectors contain the coordinates of all nodes in the mesh for each axis. Then, the same process is
done as in Algorithm 1, with the difference that the approximation is made as shown in Algorithm 3.

Algorithm 3: getNode for adaptive mesh
Input: A point pt, two vectors containing the possible coordinates of the nodes in sequence vx and vy.
Output: A node coordinate no.

1 begin
2 for i← 0 to size of vx−2 do
3 if ptx >= vxi e ptx < vxi+1 then
4 nox = vxi;
5 break;
6 end
7 end
8 if ptx == vxsize o f vx−1 then
9 nox = vxsize o f vx−1;

10 end
11 for i← 0 to size of vy−2 do
12 if pty >= vyi e pty < vyi+1 then
13 noy = vyi;
14 break;
15 end
16 end
17 if pty == vysize o f vy−1 then
18 noy = vysize o f vy−1;
19 end
20 end

Applying finite differences allows an area of the studied domain to present more significant refinements
without needing implementation treatments, resulting in lower memory cost and execution time. On the other
hand, due to the variation in the shape of the nodes, it is necessary to check the quality of mesh elements.

3 Results

The results of the tomography representation shown in Figure 1a) are presented using the developed software.
For each result obtained, the value of the difference between the areas of the geometries is delimited by the given

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Foz do Iguaçu, Brazil, November 21-25, 2022



Mesh generation and manipulation for finite difference method usage

contour and approximated in percentage, the number of nodes that form the given contour, and the number of nodes
that are internal to the region obtained is informed. The internal meshes were obtained using the octave function
inpolygon from the approximate contour of the image Eaton et al. [11]. The areas of the geometries were obtained
by the Gauss Method, used to calculate the area of irregular polygons from the set of coordinates of the vertices of
the polygon ordered in a counterclockwise direction. The method obtains the area as shown in Eq. (1) Braden [12]

A =
1
2


∣∣∣∣∣∣x0 x1

y0 y1

∣∣∣∣∣∣+
∣∣∣∣∣∣x0 x1

y0 y1

∣∣∣∣∣∣+ ...+

∣∣∣∣∣∣xn−2 xn−1

yn−2 yn−1

∣∣∣∣∣∣+
∣∣∣∣∣∣xn−1 x0

yn−1 y0

∣∣∣∣∣∣
 . (1)

Table 1 shows the contour of extracted pixels and five refinements for each mesh model. Each refinement
is defined by the values of Ni and N j, and the sparse and adaptive meshes present greater refinement in the same
regions as in Figures 3 and 4, with half the value of dx and dy. In the results of the sparse meshes, the column
of Ni and N j inform the values of the sub-mesh in parentheses. Similarly, the final number of Ni and N j is shown
for adaptive meshes. Comparisons are performed in relation to the contour of extracted pixels, which has an area
= 2.2532× 105 and 1852 points. Figure 5 shows graphs of the difference between the areas and the number of
internal nodes presented in Table 1. The mesh approximation is in red, the sparse mesh is in blue and the adaptive
mesh in black.

Table 1. Results obtained by generating meshes with various refinements for each model

Ni = N j Difference Nodes on the contour Internal nodes
mesh approximation

50 0.8497 154 1616

75 0.5187 235 3756

100 0.5321 314 6774

150 0.3670 473 15490

200 0.3163 634 27749

300 0.2339 961 62931

sparse mesh approximation

50(37x53) 0.6818 165 1306

75(55x79) 0.2410 248 3048

100(75x105) 0.2600 333 5509

150(111x157) 0.2092 504 12604

200(149x209) 0.1696 680 22597

300(223X313) 0.1130 981 51322

adaptive mesh approximation

50(68x76) 0.5023 212 2985

75(102x114) 0.2253 317 6852

100(137x152) 0.2336 427 12417

150(205x228) 0.1645 643 28109

200(274x304) 0.1457 864 50165

300(411x456) 0.1003 1212 113650

a) b)

Figure 5. Gráficos ilustrando a evolução dos refinamentos: a) diferença entre as áreas, b) número de nós internos.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Foz do Iguaçu, Brazil, November 21-25, 2022



P.Z. Silva, N.M.L. Romeiro, R.F. Casamaximo

Observing Table 1 and Figure 5, it can be concluded that the software generates efficient representations of
the mesh image, with an area difference smaller than 1% about the contour of pixels extracted from the image in the
most diminutive refinements, reaching 0.23% in the largest. In addition, it can be seen that the sparse and adaptive
mesh options allow greater refinement, concentrated in specific regions, since, even not affecting all meshes, they
resulted in a greater number of internal nodes and a smaller area difference, reaching a value of 0.1% with these
options selected on meshes with Ni = N j =300.

4 Conclusions

In this work, software was developed to generate meshes representing the contour of objects contained in
figures, allowing the application of these data in numerical simulation techniques to solve differential equations. It
can be seen from the results obtained that the meshes generated by the developed software satisfactorily describe
the unstable region present in the image, Figure 1, with an area difference of less than 1% even in the most
diminutive refinements.

Acknowledgements. The work of Silva, P. Z was partially supported by CNPq under the process 152547/2019-3.
The authors hereby confirm that they are the sole liable persons responsible for the authorship of this work.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] J. A. Cuminato and M. Meneguette. Discretização de equações diferenciais parciais: técnicas de diferenças
finitas. Sociedade Brasileira de Matemática, 2013.
[2] P. F. S. Othechar. Analysis of finite difference numerical methods for solving the poisson equation in irregular
domains (in portuguese). Master’s thesis, Programa de Pós-graduação em Matemática Aplicada e Computacional
da Universidade Estadual Paulista Júlio de Mesquita Filho,, Presidente Prudente, SP., Brazil, 2013.
[3] J. Fernández-Fidalgo, S. Clain, L. Ramı́rez, I. Colominas, and X. Nogueira. Very high-order method on
immersed curved domains for finite difference schemes with regular cartesian grids. Computer Methods in Applied
Mechanics and Engineering, vol. 360, pp. 112782, 2020.
[4] Z. Jomaa and C. Macaskill. The embedded finite difference method for the poisson equation in a domain with
an irregular boundary and dirichlet boundary conditions. Journal of Computational Physics, vol. 202, n. 2, pp.
488 – 506, 2005.
[5] T. Fukuchi. Finite difference method and algebraic polynomial interpolation for numerically solving poisson’s
equation over arbitrary domains. AIP Advances, vol. 4, n. 6, pp. 060701, 2014.
[6] R. Codina and J. Baiges. Approximate imposition of boundary conditions in immersed boundary methods.
International Journal for Numerical Methods in Engineering, vol. 80, n. 11, pp. 1379–1405, 2009.
[7] V. Rossum and Guido. The Python Library Reference, release 3.8.2. Python Software Foundation, 2020.
[8] Weisstein and E. W. Moore neighborhood. https://mathworld.wolfram.com/
MooreNeighborhood.html
[9] R. Casamaximo, N. Romeiro, Zaffalon da P. Silva, I. Souza, da J. Silva, P. L. Natti, and E. Cirilo. Algorithm
for extracting points from images: irregular contours, 2021.
[10] Bradski, Gary, and A. Kaehler. Learning OpenCV: Computer vision with the OpenCV library. ” O’Reilly
Media, Inc.”, 2008.
[11] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring. GNU Octave version 5.1.0 manual: a high-level
interactive language for numerical computations, 2019.
[12] B. Braden. The surveyor’s area formula. The College Mathematics Journal, vol. 17, n. 4, pp. 326–337, 1986.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Foz do Iguaçu, Brazil, November 21-25, 2022

https://mathworld.wolfram.com/MooreNeighborhood.html
https://mathworld.wolfram.com/MooreNeighborhood.html

	Introduction
	Development
	Contour extraction
	Mesh generation
	Sparse meshes

	Results
	Conclusions

