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Abstract. The work will present the development and implementation of linear numerical models, with the 

objective of performing mechanical analyzes on solid elements of conventional steel (MS250 and HS350), 

stainless steel (SS304) and inconel alloy (IA718). For this, we intend to implement computationally, with the aid 

of the FORTRAN programming language, a mathematical formulation based on the Finite Element Method 

(FEM), whose purpose will be to obtain the values of deformations and nodal displacements at different points of 

the parts, in addition to the von Mises stresses in each finite element that compose the structures. For the 

discretization of solid elements, 4-node tetrahedral (T4) and 8-node hexahedral (H8) finite elements were used. 

For a greater scope of validation of the implemented module and to prove its efficiency, solids with different 

geometric and physical characteristics will be analyzed. In order to verify the responses obtained from the 

implemented computational program, comparisons will be made with results found in the literature. 
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1  Introduction 

According to Bath [1], finite element procedures are currently widely used in engineering analysis, in which 

the procedures are widely used in the analysis of solids and structures, given that, in fact, finite element methods 

are useful in virtually every field of engineering analysis, and that their use for solving engineering problems began 

with the advent of the digital computer.  

Among the researches developed in the area, we can mention those of the authors Almeida [2] and Maciel 

[3], since they approached the development of a computer program for the numerical analysis of three-dimensional 

problems using the finite element method, which obtained satisfactory results in their implementations. 

Therefore, this research aims to carry out the study of numerical (mechanical) analyzes of solid elements 

related to conventional steels, of medium mechanical strength (MS250) and high mechanical strength (HS350); 

stainless steel (SS304) and inconel alloy (IA718). These analyzes will be carried out through the implementation 

of a computer program in Fortran language (Chapman [4]), based on the Finite Element Method (FEM), since the 

4-node tetrahedral finite element (T4) and the 8-node hexahedral finite element (H8) for problem modeling. 

Therefore, the aim of this research is to obtain the values of stresses, strains and displacements. With the 

purpose of validating the implemented computational program, comparisons of the results will be made with those 

found in the literature. 
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2  Formulations 

Fig. 1, shows the metre element of the 4-node tetrahedral finite element and the 8-node hexahedral element, 

respectively. 

 

Figure 1. T4 master element 

Next, the formulations of the finite elements studied in this research are presented. 

2.1 4-node Tetrahedral Finite Element (T4) 

The shape functions corresponding to this element are represented by eq. (1) and eq. (2). 

 N1 = ξ       N2 = η      N3 = φ (1) 

 N1 + N2 + N3 + N4 = 1 (2) 

For the displacement vector, we have eq. (3). 

 q = [q1   q2   q3   q4   q5   q6   q7   q8   q9   q10   q11   q12] (3) 

As the relationship between the displacement field vector and the nodal displacement vector, we have: 

 u = N q (4) 

Where N is the matrix that represents the shape functions, given by eq. (5). 

 𝐍 =  [
N1 0
0 N1
0 0

    
0 N2
0 0
N1 0

    
0 0
N2 0
0 N2

    
N3 0
0 N3
0 0

    
0 N4
0 0
N3 0

    
0 0
N4 0
0 N4

] (5) 

Then, with the help of eq. (4) and eq. (5), it is possible to conclude that: 

 u = N1q1 + N2q4 + N3q7 + N4q10  (6a) 

 v = N1q2 + N2q5 + N3q8 + N4q11  (6b) 

 w = N1q3 + N2q6 + N3q9 + N4q12  (6c) 

Since the function u depends on x, y and z, and these depend on the natural coordinate’s ξ, η and φ, then the 

function u is also dependent on ξ, η and φ. However, there has been: 
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  (7) 

Since the Jacobian matrix is given by eq. (8): 
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Considering that matrix A is the inverse matrix of the Jacobian matrix, one arrives at:  

 [
∂u

∂x

∂u

∂y

∂u

∂z
]
T

 = A  [
∂u

∂ξ

∂u

∂η

∂u

∂φ
]
T

 (9) 

It follows that the relationship between the strain vector and the displacement vector is given by eq. (10): 

 ε = B q  (10) 

Knowing that the strain vector is defined by eq. (11): 

 ε = [εx εy εz    γzy γ
zx

γ
yx]T  (11) 

After some mathematical manipulations it is possible to conclude that matrix B is equal to: 

 𝐁 =

[
 
 
 
 
 
 A11 0 0
0 A21 0
0 0 A31

   

A12 0 0
0 A22 0
0 0 A32

   

A13 0 0
0 A23 0
0 0 A33

   

−Ã1 0 0

0 −Ã2 0

0 0 −Ã3

0 A31 A21
A31 0 A11
A21 A11 0

   

0 A12 A22
A32 0 A12
A22 A12 0

   

0 A33 A23
A33 0 A13
A23 A13 0

   

0 −Ã3 −Ã2
−Ã3 0 −Ã1
−Ã2 −Ã1 0 ]

 
 
 
 
 
 

  (12) 

Given that: 

 -Ã1 = [A11 + A12 + A13]  (13a) 

 -Ã2 = [A21 + A22 + A23]  (13b) 

 -Ã3 = [A31 + A32 + A33]  (13c) 

The stiffness of the element can be obtained based on the internal strain energy equation, given by eq. (14): 

 Ue = 
1

2
 qT BT D B q ∫ dV

e
       (14) 

The calculation of the volume of a tetrahedral, via FEM, is defined by eq. (18): 

 Ve = (det J) ∫ ∫ ∫  dφ dη dξ
1-ξ-η

0

1-ξ

0

1

0
  (16) 

2.2 8-node hexahedral finite element (H8) 

The Lagrangian shape functions are represented by eq. (17): 

 Ni = 
1

8
  (1+ξ

i
 ξ)(1+η

i
 η)(1+φ

i
 φ)  (17) 

In turn, the nodal displacements will be represented by the vector: 

 q = [q1, q2,q3,… ,q23,q24 ]
T  (18) 

The element stiffness matrix corresponding to the 8-node hexahedral finite element is defined by: 

 ke = ∫ ∫ ∫ BT D B |det J| dφ dη dξ 
1

-1

1

-1

1

-1
  (19) 

J being the Jacobian matrix with dimension (3x3) and remembering that the integrals will be solved 

numerically with the aid of the Gauss-Legendre Method (Gauss Quadrature). 

The relationships between the partial derivatives of the displacements can be represented in a matrix form, 

as: 
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Considering that the gamma matrix is the inverse matrix of the Jacobian matrix, we have: 
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   (21) 

The matrix B corresponding to the 8-node hexahedral finite element is represented by eq. (22): 

 B = H  Γu DN  (22) 

From eq. (23) it is possible to conclude that: 
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since the DN matrix has 9 lines and 24 columns and will be organized with the use of sub-matrices proposed in 

the present work and presented as: 

𝐃𝐍𝟏 =

[
 
 
 
 
 
∂N1

∂ξ
0 0

∂N1

∂η
0 0

∂N1

∂φ
0 0

   

∂N2

∂ξ
0 0

∂N2

∂η
0 0

∂N2

∂φ
0 0

]
 
 
 
 
 

𝐃𝐍𝟐 =

[
 
 
 
 
 

 

∂N3

∂ξ
0 0

∂N3

∂η
0 0

∂N3

∂φ
0 0

   

∂N4

∂ξ
0 0

∂N4

∂η
0 0

∂N4

∂φ
0 0

]
 
 
 
 
 

𝐃𝐍𝟑 =

[
 
 
 
 
 

  

∂N5

∂ξ
0 0

∂N5

∂η
0 0

∂N5

∂φ
0 0

   

∂N6

∂ξ
0 0

∂N6

∂η
0 0

∂N6

∂φ
0 0

]
 
 
 
 
 

     (24.a) 

𝐃𝐍𝟒 =

[
 
 
 
 
 

  

∂N7

∂ξ
0 0

∂N7

∂η
0 0

∂N7

∂φ
0 0

   

∂N8

∂ξ
0 0

∂N8

∂η
0 0

∂N8

∂φ
0 0

]
 
 
 
 
 

𝐃𝐍𝟓 =

[
 
 
 
 
 

  

0
∂N1

∂ξ
0

0
∂N1

∂η
0

0
∂N1

∂φ
0

   

0
∂N2

∂ξ
0

0
∂N2

∂η
0

0
∂N2

∂φ
0
]
 
 
 
 
 

𝐃𝐍𝟔 =

[
 
 
 
 
 

  

0
∂N3

∂ξ
0

0
∂N3

∂η
0

0
∂N3

∂φ
0

   

0
∂N4

∂ξ
0

0
∂N4

∂η
0

0
∂N4

∂φ
0
]
 
 
 
 
 

 (24.b) 

𝐃𝐍𝟕 =

[
 
 
 
 
 

  

0
∂N5

∂ξ
0

0
∂N5

∂η
0

0
∂N5

∂φ
0

   

0
∂N6

∂ξ
0

0
∂N6

∂η
0

0
∂N6

∂φ
0
]
 
 
 
 
 

𝐃𝐍𝟖 =

[
 
 
 
 
 

  

0
∂N7

∂ξ
0

0
∂N7

∂η
0

0
∂N7

∂φ
0

   

0
∂N8

∂ξ
0

0
∂N8

∂η
0

0
∂N1

∂φ
0
]
 
 
 
 
 

𝐃𝐍𝟗 =

[
 
 
 
 
 

  

0 0
∂N1

∂ξ

0 0
∂N1

∂η

0 0
∂N1

∂φ

   

0 0
∂N2

∂ξ

0 0
∂N2

∂η

0 0
∂N2

∂φ ]
 
 
 
 
 

 (24.c) 

DN10=

[
 
 
 
 
 

  

0 0
∂N3

∂ξ

0 0
∂N3

∂η

0 0
∂N3

∂φ

   

0 0
∂N4

∂ξ

0 0
∂N4

∂η

0 0
∂N4

∂φ ]
 
 
 
 
 

DN11=

[
 
 
 
 
 

  

0 0
∂N5

∂ξ

0 0
∂N5

∂η

0 0
∂N5

∂φ

   

0 0
∂N6

∂ξ

0 0
∂N6

∂η

0 0
∂N6

∂φ ]
 
 
 
 
 

DN12=

[
 
 
 
 
 

  

0 0
∂N7

∂ξ

0 0
∂N7

∂η

0 0
∂N7

∂φ

   

0 0
∂N8

∂ξ

0 0
∂N8

∂η

0 0
∂N8

∂φ ]
 
 
 
 
 

  (24.d) 

or even in a compact form as: 

 DN = [
DN1 DN2 DN3 DN4
DN5 DN6 DN7 DN8
DN9 DN10 DN11 DN12

]  (25) 

Based on the equation referring to the strain vector, it is possible to conclude that: 

 ε = H [
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where the matrix H will be expressed by eq. (26): 
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                                                      (26) 

Hence, from Eq. (27): 
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It is possible to arrive at Γu, defined by the relation that follows: 

 Γu=[

Γ(ξ,η,φ) 0 0
0 Γ(ξ,η,φ) 0

0 0 Γ(ξ,η,φ)
]  (28) 

Since the matrix Γ(ξ,η,φ) has 3 rows and 3 columns. 

2.3 Calculation of von Mises Stress  

For elements that are subject to the plane stress state, it is possible to inform that the von Mises stress is 

represented by the following relation: 

 σVM=√σx
2+σy

2-σxσy+3τxy
2  (29) 

3  Results and discussions 

For the validation of the implemented computer program, 02 examples will be presented. For the first 

example, the solid was modeled by the 4-node tetrahedral finite element, while in the second example, the solid 

was modeled with the 8-node hexahedral finite element. 

For the numerical analyses, the mechanical properties were used: for conventional steels of medium and high 

mechanical strength, the Modulus of Elasticity (E) of 200 GPa and the Poisson's Ratio (υ) of 0.3 were used; for 

stainless steel, the Modulus of Elasticity (E) of 193 GPa and the Poisson's Ratio (υ) of 0.27 and for the inconel 

alloy, the Modulus of Elasticity (E) of 206 GPa and the Poisson's Ratio (υ) of 0.28.  

For the yield stress of the materials, the following values were used: 250 MPa and 350 MPa for conventional 

steels of medium and high mechanical strength, respectively; 215 MPa for stainless steel and 820 MPa for inconel 

alloy.  

3.1 Examplo 1 

The example shown in Fig. 2, refers to modeling the solid that has been discretized into just a single 4-node 

tetrahedral finite element. 

 

Figure 2 – Examplo 1 
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The coordinates of the nodes, given in millimeters (mm), were defined as: 1 (0,25,25) 2 (0,0,25) 3 (25,0,25) 

4 (0,0,0) 

The Tab. 1 shows the comparison of the result obtained by the research and that found in the literature, in 

addition to the results obtained with the solids under study: 

Table 1 – Nodal displacement 

Nodes 

Displacement in z (mm)     

Present  

work  

Chandrupatla e  

Belegundu [5]  

Present work /  

Literature  

MS250 HS350 SS304 IA718 

1 - 0.01341 - 0.0134 1.0007463 - 0.01388 - 0.01388 - 0.01406 - 0.01327 

2   0.0   0.0 0.0    0    0    0    0 

3   0.0   0.0 0.0    0    0    0    0 

4   0.0   0.0 0.0    0    0    0    0 

3.2 Examplo 2 

The example shown in Fig. 3, it is the modeling of the solid that was discretized in four 8-node hexahedral finite 

elements, with a total number of 20 nodes, since the measurements were given in millimeters.

 

Figure 3 – Examplo 2 

In this way, Tab. 2 shows the values obtained by the implemented code for the displacements of nodes 1, 4, 

15 and 20, in the z-axis direction. 

Table 2 – Comparative z-axis nodal displacement 

Nodes 

Displacement in z (mm)    

Present  

work  

Chandrupatla e  

Belegundu [5]  

Present work /  

Literature  
MS250 HS350 SS304 IA718 

1 - 0.4098 - 0.409828806 0.9999297 - 0.4098 - 0.4098 - 0.4317 - 0.4025 

4 - 0.4278 - 0. 427797766 1.0000052 - 0.4278 - 0.4278 - 0.4507 - 0.4202 

15 - 0.0558 - 0. 055798691 1.0000234 - 0.0558 - 0.0558   0.05946 - 0.05524 

20   0.0   0.0 1.0   0.0   0.0   0.0   0.0 

For the von Mises stress calculated for each element, they are shown in Tab. 3, for element 2, the comparison 

of the values obtained by the code with the values found in the literature, in addition to those obtained for the 

solids under study, since the numerical integration occurred with 8 points. 
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Table 3 – Comparative von Mises Stress 

Element 

Von Mises Stress (MPa)     

Present  

work  

Chandrupatla e  

Belegundu [5]  

Present work /  

Literature  
MS250 HS350 SS304 IA718 

2 

31.42 31.416 1.0001273 31.42 31.42 31.50 31.47 

61.17 61.174 0.9999346 61.17 61.17 61.57 61.44 

28.27 28.272 0.9999293 28.27 28.27 28.52 28.44 

51.61 51.608 1.0000388 51.61 51.61 52.56 52.25 

35.72 35.722 0.9999440 35.72 35.72 36.31 36.12 

35.95 35.948 1.0000556 35.95 35.95 36.79 36.51 

26.19 26.193 0.9998855 26.19 26.19 26.94 26.69 

38.61 38.615 0.9998705 38.61 38.61 38.61 38.61 

4  Conclusions 

It can be seen that in example 1, the values of the nodal displacements had a percentage difference of 

0.07463%, when compared with the values found in the literature. For the materials analyzed in this work, the 

smallest nodal displacement occurred for the inconel alloy, thus demonstrating the influence of the Modulus of 

Elasticity and Poisson's ratio on the load-bearing capacity of a solid. 

As for example 2, the largest percentage difference between the von Mises stress results obtained via the 

implemented computer code and the literature results was 0.02697%. As for the nodal displacements, the biggest 

difference was 0.02086%. The inconel alloy obtained the lowest displacement value, thus demonstrating that the 

Modulus of Elasticity is inversely proportional to the resistance capacity of a given material. 

For both examples presented, there was a convergence between the results obtained between the implemented 

code and the responses obtained in the literature. It is concluded, therefore, that the implementation developed was 

satisfactory, contributing with precise values of stress, deformation and displacement in solids submitted to a 

certain type of loading. 
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