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Abstract. In this paper, an original approach that combines Finite-Volume Theory (FVT) and Evolutionary 
Structural Optimization (ESO) is presented. ESO is based on the simple idea that the optimal structure can be 
delivered by gradually removing the ineffectively used material from the design domain. Through this procedure, 
the resulting structure will evolve towards its optimal shape and topology. In theory, one cannot guarantee that 
such an evolutionary procedure would always generate the best solution. However, the ESO technique provides a 
useful way for designers to explore forms and shapes of structures during the conceptual design stage. In literature, 
it is frequent that the design domain is constructed aiming at a Finite Element Analysis (FEA). However, some 
problems are related to numerical issues, such as the checkerboard pattern and mesh dependence. The checkboard 
effect is related to the assumptions of the finite element method, as the satisfaction of equilibrium and continuity 
conditions in the element nodes. FVT overcomes this problem because it satisfies the equilibrium equations at the 
subvolume level and the compatibility conditions are established through the adjacent subvolume interfaces, as 
expected from the continuum mechanics point of view. Some ESO’s classical problems are investigated to 
compare FVT and FEA results. 

Keywords: topology optimization; finite-volume theory; ESO. 

1  Introduction 

Several methods of structural topology optimization have been developed in recent decades, with important 
advances that have enabled practical applications. The ESO method initially proposed by Xie and Steven [1] is 
built on a pure heuristic principle that removes inefficient materials, and the structure evolves towards an optimum. 
Originally, ESO was implemented solely as a material removal method, which meant that removed parts could not 
be restored afterwards. 
Xia et al. [2] mention that, since the early development of ESO method is based on a heuristic concept and lacks 
theoretical rigor, most of the early work on ESO neglected significant numerical problems in TO, such as the 
existence of a solution, checkerboard, mesh-dependency, and local optimum.  
A checkerboard pattern describes a region alternating solid and void elements in a topology and it is commonly 
found in optimal solutions. It has been proven that the formation of the checkerboards is due to numerical 
instability and does not represent an optimal feature of the design. This problem appears commonly in most 
applications using the finite element method (FEM). The finite-volume theory (FVT) can reduce the checkerboard 
with no filtering techniques [3]. 
This work presents a new approach for TO of two-dimensional continuum elastic structures through the classic 
ESO method and FVT. The ESO is demonstrated on two ways: total strain energy-based and average von Mises 
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stress-based topology optimization problem. A classic bidimensional cantilever beam example is analyzed 
applying finite-volume theory to define the optimum design. 

2  Evolutionary Structural Optimization (ESO) 

The main ESO stress-based procedure is presented by Steven and Xie [4], so this work followed the central idea 
of that work. In addition to the von Mises equivalent stress, the total strain energy will be used as a performance 
criterion for selecting the subvolumes.  
In the ESO algorithm, some parameters are essential and are defined as initial rejection ratio (𝑅𝑅𝑅𝑅0), evolutionary 
rate (𝐸𝐸𝐸𝐸), rejection criterion (𝑅𝑅𝑅𝑅) and penalty factor (𝑃𝑃𝐹𝐹). The first three are defined in the classic ESO approach. 
In the case of continuous two-dimensional elastic structures, it is necessary to apply a 𝑃𝑃𝑃𝑃 to the stiffness matrix 
of the elements eliminated from the analyzed discretized domain, to avoid remeshing and singularity of the global 
stiffness matrix. In practice, values in the magnitude of 10-6 are recommended for the penalty factor. 
Figure 1 shows the flowchart that summarizes all the steps for developing the ESO algorithm used in this work. 
 

 
Figure 1. Flowchart of ESO algorithm. 

3  Zero-Order Finite-Volume Theory 

The present formulation has its roots in the Finite-Volume Theory (FVT) for bidimensional linear elastic structures 
developed by Bansal and Pindera [5]. The adopted reference domain is rectangular in 𝑥𝑥1 − 𝑥𝑥2 plane with 0 ≤ 𝑥𝑥1 ≤
𝐿𝐿 and 0 ≤ 𝑥𝑥2 ≤ 𝐻𝐻, which is discretized in 𝑁𝑁𝛽𝛽 horizontal subvolumes and 𝑁𝑁𝛾𝛾 vertical subvolumes, Fig. 2. The 
subvolume dimensions are designated by 𝑙𝑙𝑞𝑞 and ℎ𝑞𝑞 for 𝑞𝑞 = 1, … ,𝑁𝑁𝑞𝑞 , where 𝑁𝑁𝑞𝑞 = 𝑁𝑁𝛽𝛽 ∙ 𝑁𝑁𝛾𝛾  is the total number of 
subvolumes. In this formulation, the components of the displacement field can be approximated by a Legendre 
polynomial expansion in the local coordinated system, as presented by Bansal and Pindera [5]: 
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Figure 2. Discretized structure in rectangular subvolumes and local coordinate system of a generic subvolume q. 

The coefficients of the local displacement field can be expressed as a function of the surface-averaged 
displacements. The surface-averaged displacements are defined as 
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where the superscript indicates the subvolume face number, indexed as illustrated in Fig. 3. 

 

Figure 3. Surface-averaged kinematic and static quantities for a generic subvolume q: (a) surface-averaged 
displacements and (b) surface-averaged tractions. 

The surface-averaged tractions acting on the subvolume's faces are defined as  
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Following Araujo et al. [3], the local system of equations for a generic subvolume can be stated as 
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𝒕̅𝒕(𝑞𝑞) = 𝑲𝑲(8×8)
(𝑞𝑞) 𝒖𝒖�(𝑞𝑞) (4) 

where 𝒕̅𝒕(𝑞𝑞) is the local surface-averaged traction vector, 𝑲𝑲(8×8)
(𝑞𝑞)  is the local stiffness matrix and 𝒖𝒖�(𝑞𝑞) is the local 

surface-averaged displacement vector. 
For the global stiffness matrix assemblage, the individual contribution of each subvolume in the discretized 
structure is considered. Therefore, the global system of equations can be defined as 

𝑻𝑻(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛×1) = 𝑲𝑲(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)𝑼𝑼(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛×1) (5) 

where 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the number of degrees of freedom, 𝑻𝑻(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛×1) and 𝑼𝑼(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛×1) are the global surface-averaged traction 
and displacement vectors, respectively, and 𝑲𝑲(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) is the global stiffness matrix, which can be evaluated by 
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where �𝑳𝑳(8×𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
(𝑞𝑞) �

𝑇𝑇
 and 𝑳𝑳(8×𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

(𝑞𝑞)  are the static and kinematic incidence matrices of the subvolume q. 
Now, to define the performance parameters that will be used to obtain the optimal topology of the structure, the 
following sections are presented as obtaining the total strain energy and the average von Mises stress from the 
FVT. 
More details about FVT can be found in M. A. A. Cavalcante and M. J. Pindera [7] and [8]. 

3.1 Total Strain Energy 

Araujo et al. [6] show that, as in the finite element method, the zeroth-order finite-volume theory satisfies the 
energy balance, i.e., the equality between the work done by external loading and the total strain energy. The total 
strain energy for the FVT can be evaluated as follows, 
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where 𝑳𝑳(𝑞𝑞) is the matrix containing the subvolume face lengths being expressed as 
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and 𝐿𝐿1
(𝑞𝑞) = 𝑙𝑙𝑞𝑞, 𝐿𝐿2

(𝑞𝑞) = ℎ𝑞𝑞, 𝐿𝐿3
(𝑞𝑞) = 𝑙𝑙𝑞𝑞  e 𝐿𝐿4

(𝑞𝑞) = ℎ𝑞𝑞 are the faces’ lengths of the subvolume q. 

3.2 Locally Applied Average Stress Theorem to the Finite Volume Theory 

A proposal for evaluating the square of the average equivalent von Mises stress for each subvolume is presented 
below based on the average stress theorem of micromechanics. It is a much more efficient way to carry out this 
analysis, which is possible for the finite-volume theory because of the satisfaction of the differential equilibrium 
equations in the subvolumes. The average stress theorem is applied as presented below for the correct selection of 
the subvolumes that discretize a two-dimensional domain. 

1
𝑉𝑉 ∫ 𝑡𝑡𝑖𝑖 ⋅ 𝑥𝑥𝑗𝑗 ⋅ 𝑑𝑑𝑑𝑑𝑆𝑆 = 1

𝑉𝑉 ∫ 𝜎𝜎𝑘𝑘𝑘𝑘 ⋅ 𝑛𝑛𝑘𝑘 ⋅ 𝑥𝑥𝑗𝑗 ⋅ 𝑑𝑑𝑑𝑑𝑆𝑆 = 1
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⋅ 𝑥𝑥𝑗𝑗 ⋅ 𝑑𝑑𝑑𝑑𝑉𝑉  (9) 

where 𝜎𝜎�𝑖𝑖𝑖𝑖 = 1
𝑉𝑉 ∫ 𝜎𝜎𝑗𝑗𝑗𝑗 ⋅ 𝑑𝑑𝑑𝑑𝑉𝑉  is the volume-averaged stress. 

Thus, 
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𝜎𝜎�𝑖𝑖𝑖𝑖 = 1
𝑉𝑉 ∫ 𝑡𝑡𝑖𝑖 ⋅ 𝑥𝑥𝑗𝑗 ⋅ 𝑑𝑑𝑑𝑑𝑆𝑆 − 1

𝑉𝑉 ∫
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⋅ 𝑥𝑥𝑗𝑗 ⋅ 𝑑𝑑𝑑𝑑𝑉𝑉  (10) 

When the differential equilibrium equations are satisfied, in the absence of body forces: 

𝜎𝜎�𝑖𝑖𝑖𝑖 = 1
𝑉𝑉 ∫ 𝑡𝑡𝑖𝑖 ⋅ 𝑥𝑥𝑗𝑗 ⋅ 𝑑𝑑𝑑𝑑𝑆𝑆   (11) 

The presented formulation has its roots in the finite-volume theory, developed by Bansal and Pindera [5], for 
bidimensional linear elastic structures. From Eq. 1, strain field can be written as: 
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Then the stress field is defined as: 
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Using the Eq (2), the volume-averaged stress components are evaluated as follows: 
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 is the surface-averaged 

traction vector of a subvolume q., and 𝑻𝑻 is a transformation matrix. 

The square of the volume-averaged von Mises stress can be evaluated as follow 

𝜎𝜎𝑣𝑣𝑣𝑣
2 = 𝝈𝝈(𝑞𝑞)𝑇𝑇 ⋅ 𝑷𝑷 ⋅ 𝝈𝝈(𝑞𝑞) (15) 

where: 

𝑷𝑷 = �
1 −1/2 0

−1/2 1 0
0 0 3

� (16) 

Thus, 

𝜎𝜎𝑣𝑣𝑣𝑣
2 = 𝒕𝒕

(𝑞𝑞)𝑇𝑇
⋅ 𝑻𝑻𝑇𝑇 ⋅ 𝑷𝑷 ⋅ 𝑻𝑻 ⋅ 𝒕𝒕

(𝑞𝑞)
⇒ 𝜎𝜎𝑣𝑣𝑣𝑣 = 𝒖𝒖(𝑞𝑞)𝑇𝑇 ⋅ 𝑲𝑲(𝑞𝑞)𝑇𝑇 ⋅ 𝑷𝑷 ⋅ 𝑲𝑲(𝑞𝑞) ⋅ 𝒖𝒖(𝑞𝑞)  (17) 

where 𝒖𝒖(𝒒𝒒) = �𝑢𝑢1
(𝑞𝑞,1) 𝑢𝑢2

(𝑞𝑞,1) 𝑢𝑢1
(𝑞𝑞,2) 𝑢𝑢2

(𝑞𝑞,2) 𝑢𝑢1
(𝑞𝑞,3) 𝑢𝑢2

(𝑞𝑞,3) 𝑢𝑢1
(𝑞𝑞,4) 𝑢𝑢2

(𝑞𝑞,4)�
𝑇𝑇

 is the surface-averaged 
displacement vector, 𝐏𝐏 = 𝑻𝑻𝑇𝑇 ⋅ 𝐏𝐏 ⋅ 𝑻𝑻 is an auxiliar symmetric matrix and 𝑲𝑲(q) is the local stiffness matrix of a 
generic subvolume q. 

4  Cantilever beam Results and Discussion 

The cantilever beam is fixed on the left border, and a concentrated load (1 𝐾𝐾𝐾𝐾) is applied in the middle of the right 
border, as shown in Fig. 4. The dimensions for the design domain are 𝐻𝐻 = 100 𝑐𝑐𝑐𝑐 and 𝐿𝐿 = 160 𝑐𝑐𝑐𝑐, and thickness 
𝑡𝑡 =  10 𝑚𝑚𝑚𝑚. It is assumed the Young’s modulus 𝐸𝐸 =  100 × 109 𝑁𝑁/𝑚𝑚2 and Poisson’s ratio 𝜐𝜐 =  0.3. The 
structure is analyzed employing three different meshes: 32x20, 64x40 and 96x60. The parameters used in ESO 
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analysis is: 𝑅𝑅𝑅𝑅0 = 0.1%, 𝐸𝐸𝐸𝐸 = 0.1% and 𝑅𝑅𝑅𝑅 = 25%. The desired final volume is 45%. 

 
Figure 4. Cantilever beam. 

Figures 5 and 6 present the results obtained in the numerical analyzes from the cantilever beam, referring to the 
performance parameters used, respectively, stress-based, and strain-based methods. The units of the other 
parameters are KN/cm² for stress, KN.cm for strain energy, and the displacements are in centimeters. 
With a finer mesh, there is a reduction in the mean and standard deviation, as well as in the maximum values. A 
reduction in the displacement values is also noticed, where for the two cases there are similar values. The 
topologies present different results, indicating that for the same level of displacement stiffness, the performance 
parameters imply different topologies. It was verified the natural difficulty in the analyzes with the ESO to 
correctly define the RR0 and ER parameters that lead to an optimal structure, considering the same final volume. 
Hence the variation in material quantity at the end of the procedure. 
Another detail refers to the checkboard pattern that is minimized when compared to the FEM, in works found in 
the classic ESO papers. 
 

 
Figure 5. Optimal topologies for the cantilever beam by ESO stress-based method. 

 
Figure 6. Optimal topologies for the cantilever beam by ESO strain-based method. 

5  Conclusions 

A new approach for Topology Optimization (TO) based on the Evolutionary Structural Optimization (ESO) via 
Finite-Volume Theory (FVT) is presented in this investigation. The coupling between the two techniques is 
possible and will serve as a basis for further studies. For example, evaluating mesh dependency, applying filtering 
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techniques, introducing nonlinearities, comparing results from other optimal topologies found in the literature. 
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