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Abstract. A finite element is developed for plane stress problems based on the static theorem of limit analysis. 

This four-node quadrilateral element satisfies the equilibrium equations and the mechanical boundary conditions 

on average, and, as such, it is not expected lower bounds on the collapse load from the computed results. 

Numerical tests are carried out using the von Mises criterion, which is exactly satisfied throughout the element. 

The nonlinear convex optimization problem posed here is treated as second-order cone programming and solved 

with a primal-dual interior-point algorithm implemented in the MOSEK optimization package. 
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1  Introduction 

For perfectly plastic material with associated flow rule, the theory of plasticity allows lower and upper 

bound predictions of the collapse load by means of the static and kinematic theorems, respectively [1]. Coupling 

these theorems with the finite-element method gives rise to large-scale constrained optimization problems that 

can be solved by means of linear or nonlinear programming techniques. 

The usefulness of this very powerful procedure was limited initially by the lack of robustness of the 

algorithms that were available for solving large-scale mathematical programming problems and by the low 

computational capability. Considerable challenges have been posed and significant progress has been made over 

the years [2, 3]. Now, efficient predictions of the collapse load can be made and the procedure has become a 

simpler alternative to elastoplastic finite element approaches, which require the computationally expensive effort 

of an evolutive analysis that follows the whole history of loading [4]. 

The static theorem of limit analysis requires stress fields satisfying the equilibrium equations, the 

mechanical boundary conditions, and the yield criterion everywhere [5]. In this sense, the multinode triangular 

element proposed by Belytschko and Hodge [6] for plane stress and the three-node triangular element proposed 

by Lysmer [7] for plane strain give rigorous lower-bound solution for several usual cases. Owing to its 

simplicity, the latter has become a reference and inspired many other developments [8, 9]. To the best of the 

authors’ knowledge, it is the only three-node triangular element for computing strict lower bounds on the 

collapse load of plane problems. 

The three-node triangular finite element developed by Cavalcante et al. [10] provides linearly varying stress 

fields that satisfy the equilibrium equations within the element and the mechanical boundary conditions on 

average. However, the traction continuity across the element interfaces and the yield criterion are nowhere 

violated. Discrete plane strain and stress problems, described by Mohr-Coulomb and von Mises criteria, 

respectively, are considered and dealt with as nonlinear convex programming. The optimization problem is 

formulated as second-order cone programming and solved using a robust interior-point algorithm implemented 

in MOSEK [11, 12]. The element performance shows that not satisfying the equilibrium equations and the 

mechanical boundary conditions exactly seems to be irrelevant in view of its accuracy compared with the 
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benchmark element proposed by Lysmer and with exact or other excellent numerical references found in the 

literature. 

Triangles are quite convenient for mesh generation. However, it is common in two-dimensional finite 

element modeling that if one has a choice between triangles and quadrilaterals with similar nodal arrangement, 

preference is given to quadrilaterals. It is in this sense that the numerical procedure of Cavalcante et al. [10] is 

extend here to incorporate a four-node quadrilateral element with stress bilinearly interpolated. Just as for the 

triangular element, the quadrilateral element equation is also obtained in explicit form and preliminary 

investigation of its numerical behavior is provided. 

2  Finite Element and Plastic Admissibility 

The static approach of the limit analysis requires that the assumed stress field must satisfy the equilibrium 

equations, the mechanical boundary conditions and the yield criterion everywhere. Under these idealized 

conditions, the computed limit load is a lower bound on the true collapse load [5]. 

 

Figure 1. Free-body diagram of the element Ω� with the unit normal vector � on its boundary Γ�, the body force � and the traction � activated by the surrounding elements or external agents. The element mapping from the 

parametric �� to the Cartesian physical space 	
 takes place by means of (2). 

Suppose that the solid is divided into a number of quadrilateral elements and treated as an assembly of 

them. An isolated element, sketched on the right of Fig. 1, is a free-body diagram held in equilibrium by the 

body force � = �� ��� and the traction � = ��� ���� activated by the surrounding elements or external 

agents. Cavalcante et al. [10] show that the equilibrium equations and the mechanical boundary conditions may 

be enforced by means of the weak form 

� ���	���� + � ���	̅���� + � ���	�	�
�� − �  !��"�#	�	�
�� = 0																																		 1" 

where the portion Γ& and Γ' of the element boundary Γ� falls on the solid boundary with prescribed displacement 

and traction �,̅ respectively. The vectors � = �(� (��� and # = �σ� σ� τ���� represent the weight function 

and the stress, and ! is a differential operator [10]. 

Figure 1 shows the element as a square with sides of length 2 defined in local dimensionless coordinates � 

and � which vary from −1 to +1, and as a quadrilateral obtained from the square element after a mapping given 

by 
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Proceeding in a similar manner, the weight function and stress at any point are interpolated from their nodal 

values �- and #- by means of 

� = +,-�-
.

-/0 										# = +,-#-
.

-/0 .																																																																	 4" 
Note that � and # vary linearly on quadrilateral coordinate lines � = constant and � = constant, but are not 

linear polynomials as in the case of the three-node triangle developed by Cavalcante et al. [10]. 

Substitution of (4) into (1), followed by integration in the parametric space ��, leads to 
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and 

F- = G,- 00 ,-H .																																																																																		 7" 

Details on how to obtain the element equation (5) in explicit form are given in [13]. Moreover, this 

reference also proves that the imposition of the von Mises yield criterion J #" ≤ 0 at the element nodes implies 

the satisfaction of the criterion throughout the element. For plane stress, 

J #" = LMN� − N�O5 + N�5 + N�5 + 6P��5 − √2NR																																																				 8" 
where σR is the yield stress in simple tension. 

3  Second-Order Cone Programming 

In the static approach to limit analysis, the solid equilibrium and the yield criterion, expressed in terms of 

nodal stresses, are constraints of an optimization problem for the applied load maximization. The optimal 

solution T∗ = VWX	 T |	Z#[ = T\0 + \5, ] #[" ≤ ^_																																																						 9" 
identifies the collapse load, where the applied load has been split into two parts: T\0 which is adjusted during the 

optimization by means of the load factor T, and \5 which is kept constant. The vector #[ collects the nodal 

stresses. 
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Figure 2. Square plate with symmetric cuts under uniformly distributed load a and solution domain modeled by 

the 3 × 3 mesh. 

The equality constraint Z#[ = T\0 + \5,																																																																																 10" 
which arises from the assembly of (5), represents the discrete equilibrium of the whole solid. The inequality 

constraint ] #[" ≤ ^,																																																																																					 11" 

which stems from the evaluation at each mesh node of inequality J #" ≤ 0, ensures no violation of the yield 

criterion. 

To formulate (9) as a second-order cone programming [14] under the von Mises criterion for plane stress, 

one introduces the auxiliary variables 

c = ;d0d5d6d.
< = e1 −1 01 0 00 1 00 0 √6f g

N�N�P��h																																																													 12" 
into the function (8) to state the criterion as the four-dimensional second-order cone 

Ld05 + d55 + d65 + d.5 ≤ √2NR.																																																																	 13" 
Now, the problem (9) can be treated as second-order cone programming by just replacing ] #[" ≤ ^ with ]0 #[, ci" = ^										]5 #[, ci" ≤ ^,																																																																 14" 

where the vector ci collects the nodal values of c. The new constraints (14) stem from the evaluation of (12) and 

(13) at each node. Recasting the problem in the form of second-order cone programming is particularly 

advantageous because it guarantees global convergence and efficiency in the solution process when coupled with 

a primal-dual interior-point algorithm. 

The optimization problem solution is carried out following the steps: (a) set up the problem as second-order 

cone programming (problem (9) with (11) replaced by (14)) by means of the YALMIP toolbox [15] in the 

MATLAB [16] environment; (b) solution by MOSEK [12] using the primal-dual interior-point algorithm 

developed for nonlinear convex optimization by Andersen et al. [11]. 

4  Numerical Test 

The test consists of the square plate of side 2j, with thin j/3 long cuts as shown in Fig. 2, submitted to a 

uniformly distributed load a acting at two opposite edges. Owing to symmetry consideration, only the right top 

quarter of the plate is defined as the solution domain subjected to the mechanical boundary conditions: �l = �m =

L L
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0 on the top edge; either �l = �m = 0 (inside de cut) or �m = 0 (outside de cut) on the left edge; �l = a and �m = 0 on the right edge; �m = 0 on the bottom edge. The weight function component (l is made null on the left 

edge outside the cut and on the bottom edge because �l is unknown there. Because of the presence of the thin 

cuts, the stress field is far from homogeneous in this problem. 

Table 1 contains the limit load predictions normalized by anop = 1.2744, which is an excellent collapse 

load estimate computed by means of the average between the lower and upper bounds obtained by Ciria et al. [8] 

with NR = √3. The results obtained with the three-node triangular element [10] are also shown in the table. An q × q mesh of triangular elements has the same NDV and NC as the respective mesh of quadrilateral elements, 

but with twice the number of elements. The convergence of a to anop can be observed as the mesh is refined and 

this is accomplished monotonically from below. The number of iterations agrees with already published 

numerical experiments, in the sense that an interior-point method demands typically between 5 and 50 iterations 

to solve any problem in the form of second-order cone programming problem [14]. The reported CPU1 times 

refer to the time spent on the assembly operation and CPU2 times refer to the time actually spent on the 

optimization iterations. The computations are performed on a personal laptop computer (Intel Core i7-9750H 

CPU and 64 GB of RAM) running a 64-bit Windows 10. 

Table 1.  Collapse load predictions for the plate with symmetric cuts 

Mesh Element NE NDV NC a anop⁄  iter CPU1(s) CPU2 (s) 

3 × 3 

present      9 

    113     106 

0.7268 10 0.53 0.25 

[10]     18 0.7687 10 0.58 0.30 

6 × 6 

present     36 

    344     332 

0.8717 10 0.65 0.25 

[10]     72 0.8966   9 0.66 0.28 

12 × 12 

present   144 

  1184   1162 

0.9383 12 0.95 0.31 

[10]   288 0.9530 14 0.92 0.39 

24 × 24 

present   576 

  4376   4334 

0.9688 15 2.22 0.42 

[10] 1152 0.9765 14 2.17 0.39 

48 × 48 

present 2304 

16808 16727 

0.9835 19 7.30 1.01 

[10] 4608 0.9875 18 7.28 0.95 

         NE: no. of elements; NDV: no. of design variables; NC: no. of constraints; iter: no. of iterations 

5  Conclusions 

A numerical procedure is provided for limit analysis of plane strain problems by combining discrete models 

of four-node quadrilateral finite elements and second-order cone programming. The proposed quadrilateral 

element has the attractive feature of being explicitly obtained, avoiding the expensive exact integration by four-

point Gauss quadrature. An q × q mesh of triangular elements has the same NDV and NC as the respective mesh 

of quadrilateral elements, but with twice the number of elements. In this case, the numerical tests show that the 

predictions of the collapse load are slightly less accurate for the quadrilateral element. As the mesh is refined, the 

results converge monotonically from below. This, however, demands further detailed examination. 
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