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Abstract. Large reservoir flow models today can contain more than a billion unknowns. Simulation of these 
models is not feasible even with the most powerful parallel computers. Generally, upscaling techniques are used 
to define coarser, i.e., smaller, models that can be processed with reasonable computer resources and in a 
reasonable amount of time. These techniques consist in a kind of homogenization of the models to obtain 
representative properties. Such procedures, of course, lead to loss of information. In the last decades, Multiscale 
Finite Volume (MsFV) methods have been developed to solve these problems. These techniques, in which 
operators are responsible for transferring information between the fine and coarse scales, provide more accurate 
solutions than upscaled models at an acceptable CPU cost. Several authors have developed different strategies to 
obtain accurate solutions using multilevel or multiscale strategies, such as: the i-MsFV, an iterative procedure to 
smooth the multiscale solution with an efficiency comparable to the original MsFV; the Algebraic Multiscale 
Solver (AMS), as a preconditioner; the Two-stage AMS (TAMS), which applies an algebraic variant of the MsFV; 
the monotone Multiscale Finite Volume, with a selective coarse-scale stencil fixing, where either the RBC is 
replaced by linear boundary conditions (LBC) or "large" non-physical terms are recalculated with upscaling; the 
zonal MsFV (zMsFV), which splits the domain of interest into a classical MsFV or with additional zonal functions; 
and the Adaptive Algebraic Dynamic Multilevel (A-ADM), which solves flow problems in highly heterogeneous 
petroleum reservoirs using non-uniform levels. In this work, we have implemented the Algebraic Dynamic 
Multilevel with Non-Uniform Resolution (NU-ADM) using a finite volume formulation of the Two Point Flux 
Approximation (TPFA) for fully implicit simulation of two-phase flows in highly heterogeneous porous media. 
The NU-ADM operators are based on the Algebraic Multi Scale (AMS) operators. This method provides adaptive 
multiscale resolution based on the contributions of each volume to the non-physical terms on the coarse scale 
matrix. We use mesh adaptivity to control these terms. Our parameters are based on the pressure-pressure terms 
of the Jacobian matrix and the saturation field and takes place during the Newton-Raphson procedure that is used 
to solve the nonlinear system. 

Keywords: Non-Uniform Algebraic Dynamic Multilevel (NU-ADM) Method, Reservoir Simulation, Finite 
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1  Introduction 

Numerical simulation of fluid flow in petroleum reservoirs is an important tool for obtaining information that 
will allow optimal ultimate oil recovery. The current industry standard for geocelular (static models) have a size 
of up to 109 blocks, while simulation models (dynamic meshes) are only up to 107 blocks in size. Therefore, the 
simulation of flows on high-resolution grids is possible only through distributed computer systems [1]. In general, 
homogenization techniques, such as upscaling, are used to obtain approximate solutions using lower resolution 
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grids, resulting in a loss of information and accuracy. More recently, multiscale finite volume (MsFV) methods 
have been developed as they provide more accurate solutions than the upscaling techniques by transferring 
information between the fine and coarse scales using data transfer operators (restriction and prolongation), at a 
lower CPU cost compared to fine scale simulations. The prolongation operator is obtained through local solutions 
of elliptic problems with reduced boundary conditions (RBCs) [2]. It is well known in the literature that although 
RBCs provide fine-scale decoupling in local distributable problems, they can lead to strongly non-monotonic 
pressure solutions, especially for very heterogeneous reservoirs [3]. In order to control the pressure oscillations, 
some strategies may be employed as the Non-Uniform Algebraic Dynamic Multilevel and Multiscale (NU-ADM) 
method [4], an extension of the ADM framework [5] that can handle non-uniform levels in any coarse-scale control 
volume. This method uses algebraic criteria that identify volumes that must be maintained at the fine scale in order 
to keep the non-physical terms in the NU-ADM system below a user-defined value. These criteria analyze the 
multiscale prolongation operator and the fine-scale transmissibility matrix of each primal coarse-scale control 
volume. This method was employed to work over an Implicit Pressure Explicit Saturation (IMPES) scheme 

In this work, we extended the NU-ADM to work with the Fully Implicit (FIM) scheme in which the pressure 
and saturation fields are determined nonlinearly by implicitly solving the pressure and saturation fields on the 
FIM-NU-ADM resolution. The proposed method was applied to the simulation of two-phase flows in petroleum 
reservoirs with highly heterogeneous permeability fields and demonstrates an effective accurate way to get an 
approximated solution to the cases under study. 

2  Mathematical model 

In this paper, we assume immiscible, isothermal, and incompressible fluid flow of oil and water, neglecting 
capillarity, gravity, and adsorption, through a non-deformable porous medium and use a fully implicit (FIM) 
strategy to solve the mass conservation equation. Under these hypotheses, the mass conservation equation can be 
written as: 

 𝜙𝜌௜
డௌ೔

డ௧
= −𝜌௜∇ሬሬ⃗ ⋅ 𝑣పሬሬሬ⃗ + 𝑞௜  , (1) 

Where, 𝑆௜, 𝜌௜  and 𝑣పሬሬሬ⃗  are the saturation, density and velocity of the phase 𝑖 = 𝑜,w, 𝑞௜ represents the source/sink 
terms. The velocity is calculated through the Darcy’s law, as: 

 𝑣పሬሬሬ⃗ = −
௞ೝ೔

ఓ೔
𝐾∇ሬሬ⃗ 𝑝, (2) 

With, 𝜇௜ and 𝑘௥௜ representing the phase viscosity and relative permeability, respectively. The latter calculated 
using the Brooks and Corey model. 𝐾 and 𝑝 represent the rock porosity tensor and the pressure, respectively. In 
addition, we consider the reservoir rock fully saturated by the fluids, i.e., 𝑆௢ + 𝑆௪ = 1. 

3  Numerical approximation 

In this work, we have applied the backward Euler’s method for time differentiation which led to a non-linear 
scheme with coupled pressure and saturation fields. By applying the finite volume method, we discretize Eqs (1) 
and (2). To discretize the diffusive terms of these equations we use the Two Point Flux Approximation (TPFA) 
method and mobilities are approximated by the First Order Upwind (FOU) method, leading to a non-linear system 
of equations that we solve by the Newton-Raphson method, that can be written as: 

 ൜
𝐽(𝑥௞)𝛥𝑥௞ାଵ = −𝐹(𝑥௞)

𝑥௞ାଵ = 𝑥௞ + 𝛥𝑥௞ାଵ
,  (3) 

 

Here, 𝐽 represents the Jacobian matrix of the 𝐹, this last represents the mass balance on each volume of the 
computational domain, 𝐽 is stated as the expression on Eq. (4). 
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,  (4) 

We organize the terms of Eq. (4) using the following submatrices: 

 ൤
𝐽௢௣ 𝐽௢௦

𝐽௪௣ 𝐽௪௦
൨ ൤

𝛥𝑥௣

𝛥𝑥௦
൨ = − ቂ

𝑟௢

𝑟௪
ቃ,   (5) 

  

3.1 Extension of NU-ADM to fully implicit  

The NU-ADM applies three algebraic parameters to define the volumes to be maintained on the fine scale. 
The first is the front tracking criteria, 𝛿௜௝ = 𝑎𝑏𝑠(𝑆௜ − 𝑆௝), we maintain on the fine scale the volumes where the 
value is bigger than a user defined value, 𝛿୪୧୫. The second measures the contribution of a volume on the fine scale 
to the non-physical terms on the coarse scale, 𝜂௜ = 𝑚á𝑥൫𝐽௢௣𝑃)௜,௄ஷூ/𝑡ூூ

஼ ൯, the volume 𝑖 is maintained on fine scale 
if 𝜂௜ is bigger than 𝜂௟௜௠. The third parameter groups volumes with 𝛽௜ = (1 − 𝜙ூ(௜))/𝜙ூ(௜) bigger than 𝛽௟௜௠. More 
details about this parameters can be found on [1]. 

 
Our method uses operators to transfer information between the scales, these operators are based on the work 

of Santos, 2022 [1] and can be written as:  

 𝑅ிூெ = ቂ
𝑅 0
0 𝑅

ቃ , 𝑃ிூெ = ቂ
𝑃 0
0 𝑅்ቃ, (6) 

 
Where, 𝑅 and 𝑃 are the NU-ADM restriction and prolongation operators, 𝑅்  is the transpose of the NU-

ADM restriction operator. 
The coarse-scale system is constructed as:  

 𝑅ிூெ𝐽௞𝑃ிூெ𝛥𝑥௞ାଵ = −𝑅ிூெ𝑟௞,  (7) 

We use the FIM-NU-ADM with to solve the linear equations given by the Newton-Raphson’s method to 
approximate the solution of the system given in Eq. (5) through the algorithm show in Figure 1. 

Figure 1: FIM-NU-ADM Algorithm. 
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4  Results 

In this work, we have implemented the proposed methods in Python, based on the basic libraries of this 
language, e.g. NumPy, SciPy, SymPy for algebraic and symbolic computations, and PyVista and Matplotlob for 
visualization and graphics. At this point, we do not have a massively parallel implementation. Only some parts of 
the code run in a parallel shared memory implementation and we have not done yet an extensive study of 
computation time. 

In this section, we present the results, 𝑥ிூெିே௎ି஺஽ , obtained by applying the fully implicit extension of the 
NU-ADM framework to a set of test cases and compare to those obtained solution on the fine-scale mesh, 𝑥௙௦ 
(𝑥 = 𝑝, for the pressure and 𝑥 = 𝑠, for the saturation). The error norm is defined as, 

 ห|𝑒௫|ห = ቚห𝑥ிூெିே௎ି஺஽ெ − 𝑥௙௦หቚ / ቚห𝑥௙௦หቚ.  (8) 

In the example we have used a fixed coarsening ratio 𝐶𝑅 = (5, 5). The permeability field and the wells 
positions are shown in Fig. 3. As initial condition we set a constant water saturation of 𝑆𝑤 = 0.0 equal to the 
irreducible, the residual oil saturation was set as 0.0. The viscosity is 0.3 𝑐𝑃 for the water and 3𝑐𝑃 for the oil, in 
addition null flux was set in all external boundaries. The permeability field is shown on Figure 2, we used the 
following NU-ADM parameters, 𝛿௟௜௠ = 0.2, 𝜂௟௜௠ = 1 and 𝛽௟௜௠ = 3. The definition of these parameters is 
available on [1].  

 

The simulation was performed until we reach 70% of porous volume injected (PVI) and the pressure and the 
saturation error norms are presented on Fig. 3. 

Figure 3. Pressure error norm, 𝐿ଶ (left) and saturation error norm, 𝐿ଵ (right) 

The production curve and the percent of active volume and the production curve are shown on Fig. 4 where 
we can see that our methodology was capable of reproduce with a reasonable accuracy the production curve while 
using a fraction of volumes on the fine scale. 

Figure 2. Permeability field and well’s location of the 85th layer of the SPE-10. 
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The saturation field on the time corresponding to 57% of porous volume injected is shown on Fig. 5, where 
we can see the reference solution obtained with the direct simulation on the fine scale and the solution obtained 
with the FIM-NU-ADM strategy with the volumes on the fine scale presented on the bottom figure. 

  

5  Conclusions 

In this paper, we have extended the Algebraic Dynamic Multilevel method with Non-Uniform levels to deal 
with fully implicit schemes. This method applies the level definition criteria, in a non-uniform mesh resolution to 
control the non-physical terms that may induce non-monotone solutions at the NU-ADM transmissibility matrix 
throughout the simulation. The results obtained for the example presented here show that the NU-ADM framework 
is perfectly extensible to the fully implicit simulation and is capable of producing accurate results for a challenging 
problem (bottom layer of SPE-10) using only a fraction of the volumes of the original fine-scale problem. 

Acknowledgements. We would like to thank FACEPE (Fundação de Amparo à Ciência e Tecnologia do Estado 
de Pernambuco) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the financial 
support for this research. 

Figure 5: Saturation fields, obtained by solution on fine-scale (top) and NU-ADM (bottom) 

Figure 4: Water/Oil ratio (left) and percent of active volumes (right). 
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