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Abstract. Developing software for robots is a complex task as it involves many fields of knowledge, from sensor 

drivers for data acquisition, data processing, control loops, artificial intelligence, task management, etc. In 

addition, the hardware is often built distributed across different devices with different computing capabilities. 

Based on this, the Robot Operating System (ROS) was developed, which is a framework for developing distributed 

robot applications. ROS provides a communication layer that abstracts the way communication is performed and 

allows transparent and distributed access to data. In addition, ROS provides tools for viewing information, 

compiling, managing packages, etc. A new version called ROS 2 has been launched, and it includes industry-

standard features, best practices in software development to better support commercial and research robotic 

applications. To demonstrate the use of ROS in the development of robotic applications, this paper presents an 

outdoor autonomous navigation application of a 4WD robot. This application explored the use of microcontrollers 

to control wheel speed, embedded minicomputer running algorithms for sensor fusion of odometry, inertial sensors 

and GNSS for localization and navigation algorithms. Navigation tests were conducted in a parking lot. 
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1  Introduction 

The scope and scale of robotics are continually growing, and the wide variation in the type of hardware used 

by each robot makes this a complex task. These are tasks from the hardware interface level to perception 

algorithms, abstract reasoning, etc., which make code reuse difficult. There is also the fact that the breadth of 

knowledge required to implement all these tasks is beyond the capabilities of any researcher. ROS (Robot 

Operational System) emerged to make easier to develop software for robots, as said by Quigley et al. [1]. 

Despite the name, ROS is not an operating system. In fact, it is an open-source framework that provides a 

structured communication layer over operating systems on a heterogeneous network of computers. It also provides 

libraries and tools to facilitate the creation of robotic applications, message transfer between processes, viewers, 

device drivers, hardware abstraction, package management, etc., as described by Quigley et al. [1] and ROS [2]. 

The present work aims to demonstrate the development of an outdoor autonomous navigation robotic 

application, which includes the use of several technologies. In this application, various resources were explored 

such as the use of microcontrollers to control wheel speed, an embedded minicomputer running algorithms for 

sensor fusion of odometry, inertial sensors and GNSS for localization, navigation algorithms such as path planner, 

trajectory control, local and global costmaps and obstacle avoidance. The work describes which ROS tools and 

packages were used, demonstrating how the task of designing a complex application like this is simplified using 

the ROS ecosystem.  
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2  Architecture 

2.1 About the robot used 

The robot used is a differential mobile robot with four-wheel drive, with each pair of wheels on each side 

being driven by a DC motor. The robot is also equipped with two incremental wheel encoders, IMU Bosch 

BNO055, 2D LiDAR Sick TiM551, RTK GNSS receiver ublox C94-M8P, ESP32 microcontroller, Raspberry PI 

4B mini-computer and Wi-Fi access point, as can be seen in Figure 1 as well as the hardware architecture. 
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Figure 1. 4WD robot used (left) and hardware architecture (right). 

2.2 Sensor measurements and low-level control 

Use of miroROS for compute wheel odometry and PID control loops. Reading the encoders, calculating the 

odometry and executing the wheel speed control loops was performed using microROS, a version of ROS 2 that 

can be embedded into microcontrollers. The firmware was developed taking advantage of the ESP32's multicore 

processing capability, using multiple threads for each task. The firmware architecture can be seen in Figure 2. In 

summary, ESP32 receives wheel speed setpoints and executes the control loops for each wheel and applies the 

PWM signals to the motors' power drivers. These setpoints are computed based on the cmd_vel topic, which 

consists of linear and angular velocity set points calculated by the autonomous navigation stack or by the joystick. 

Furthermore, it performs reading of both right and left wheel encoders (two channels each) through interrupts. 

With pulse counting, the odometry is computed and published via a topic to be accessed in any ROS node. 

Odometry 
computation

ISR
Left encoder 

read

ISR
Right encoder 

read

Left wheel 
PID

Right wheel 
PID

Wheel speeds

PWM
left wheel

PWM
right wheel

/esp32/odometry

/esp32/set_points_rodas

ESP32 firmware

 

Figure 2. Firmware architecture. 

IMU, GNSS and LiDAR. The reading of the other sensors was performed using packages available for ROS 

2. The IMU data was read by the package bno055, developed by the GitHub user Flynn [3]. The reading of the 

GNSS receiver was performed using the ublox packages, developed by Kumar Robotics [4]. LiDAR reading was 

performed using the sick_scan2 package, developed by the sensor manufacturer Sick AG [5]. 

2.3 Localization and transform setup 

Alatise and Hancke [6] claim that the localization system is one of the most important modules to implement 

an autonomous navigation system. By dealing with data of different types and sampling rates, this is usually a 

complex task. ROS provides two fundamental packages to assist in the assembly of a robust localization system: 

robot_localization and tf2. The robot_localization package authors, Moore and Stouch [7] claims 
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that the package contains state estimation nodes, each of which is an implementation of a non-linear state estimator 

for robots moving in 3D space, using either the extended Kalman filter (EKF) or the unscented Kalman filter 

(UKF), in addition to a node that assists in the integration of GNSS data. The tf2 package is the ROS transform 

library, which allows the user to track multiple coordinate frames over time, maintaining the relationship between 

frames in a tree structure buffered in time, and allows the user to transform points, vectors, etc. between any two 

coordinate frames at any desired point in time, as said the tf2 author Foote [8]. 

The localization system was configured in accordance with REP-105, proposed by Meeussen [9], which is a 

requirement of the Nav2, navigation stack used that will be detailed in section 2.4. Basically, it is necessary for the 

transform tree to have two reference systems, a local one to control and avoid obstacles and a global one to maintain 

the correct pose estimation on the map, in addition to the static transforms for the sensors. The configured 

transform tree can be seen in Figure 3 (left). 

map: global reference frame
odom: local reference frame
base_link: robot frame
gps: GNSS receiver frame
laser_link: LiDAR frame
imu_link: IMU frame

  

Figure 3. tf2 transform tree (left); Localization system architecture [10] (right). 

To reach this transform tree configuration, it is necessary to correctly configure the localization system. The 

architecture used for the localization system was the one proposed by the robot_localization package 

documentation, as can be seen in Figure 3 (right). In this way, the localization system generates the transform tree 

expected by the Nav2 navigation stack, in addition to providing data through topics. 

2.4 Navigation stack 

The navigation stack used in this work is Nav2, which is the stack presented in “The Marathon 2” paper of 

Macenski et al. [11], allowing two robots to navigate over 37 miles through high-trafficked areas. The Nav2 

framework seeks to find a safe way to have a mobile robot move from point A to point B. It can also be applied in 

applications like following dynamic points. Nav2 will complete dynamic path planning, compute velocities for 

motors, avoid obstacles, and structure recovery behaviors. It uses behavior trees (BT) to call modular servers to 

complete an action, that can be to compute a path, control effort, recovery, or any other navigation related action. 

The diagram of Figure 4 gives an overview at the structure of Nav2. It has tools to: load, serve, and store maps; 

localize the robot on the map; plan a path from A to B around obstacles; control the robot as it follows the path; 

smooth path plans to be more continuous and feasible; convert sensor data into a costmap representation of the 

world; build complicated robot behaviors using behavior trees; compute recovery behaviors in case of failure; 

follow sequential waypoints; manage the lifecycle and watchdog for the servers; and plugins to enable your own 

custom algorithms and behaviors, as described in the Nav2 documentation written by Macenski [12]. 

 

Figure 4. Nav2 architecture. [12] 
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The expected inputs to Nav2 are TF transformations conforming to REP-105, a map source, a BT XML file, 

and any relevant sensor data sources. It will then provide valid velocity commands for the motors of a holonomic 

or non-holonomic robot to follow. 

2.5 Other used packages 

Other packages used were: joy and teleop_twist_joy to control the robot through a joystick; rviz2, 

which contains RViz, ROS supervision and visualization software; rqt_graph for visualization of the 

communication graph between nodes through topics. 

3  Tests and results 

The algorithms mentioned in section 2 were configured and executed in the robot. The fully configured 

system has approximately 39 nodes communicating through 64 topics. 

To evaluate the assembled structure, initially the robot was positioned in a parking lot. Then it was requested 

the robot to go to a certain point. After it reached the first goal, it was requested to the robot to go to another point, 

however, in the middle of the way an obstacle appears to test the ability to avoid obstacles dynamically. Figure 5 

shows the supervision and testing environment. Figure 6 shows the moment the robot detects and avoids the 

obstacle. The complete result can be watched in a YouTube video of GAIn [13] (https://youtu.be/AUlz58yum58). 

 

Figure 5. Navigation test: RViz and robot image synchronized. 

  

Figure 6. Navigation test: RViz and robot image synchronized at the moment of avoiding an obstacle. 

4  Conclusions 

ROS 2 was used to develop an outdoor autonomous navigation robotic application. As can be seen in the 

video of the test performed, the implementation was successful. The strategy of developing applications in a 

distributed and isolated way contributes to the applications to be decoupled and organized. The use of ROS also 

contributes to the fact that a lot of the code does not need to be developed again, but rather reused through packages 

made available by the ROS community. 

As future works, GNSS fusion will be better managed, according to covariance of the signal, allowing the 
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localization system to be free of RTK corrections failures, making navigation even more reliable and smooth. It is 

also possible to improve the current application to become a ready for use application, i.e., setup the software to 

run immediately the robot is turned on, allowing the user to use it with the joystick or in an autonomous application. 

It can also be developed some specific applications for agriculture, surveillance, industrial inspection, etc. 
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