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Abstract. A main characteristic of many engineering materials is the presence of natural fractures at different
scales. The effective mechanical behavior of these materials is strongly affected by that of the fractures, which can
be viewed as discontinuities able to transfer stresses. The contribution of the present work relies upon microme-
chanics for assessing the effective stiffness through homogenization upscaling of elastic materials with embedded
microfractures. In the context of Eshelby equivalent inclusion theory, the approach makes use of the Mori-Tanaka
scheme to formulate estimates for the homogenized elastic moduli. For this purpose, the fractures are geometri-
cally modeled as oblate spheroids endowed with appropriate elastic properties. Particular emphasis is dedicated to
addressing the configurations of a single family or two families of parallel fractures, as well as the configuration
of randomly oriented fractures.
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1 Introduction

Most of engineering materials and especially geomaterials such as rock, concrete, or asphalt pavements ex-
hibit discontinuity surfaces at different scales with various sizes and orientations. Usually, these discontinuities are
associated with fractures and correspond to a region of small thickness, along which the mechanical and physical
properties of the material are degraded. Their presence constitutes a fundamental weak component for deforma-
bility, stability, and safety of many civil engineering structures, reducing stiffness, shear strength, and ductility,
in addition to providing preferential channels for fluid flow. Unlike cracks, fractures are discontinuities that are
able to transfer stresses, and can therefore be regarded from a mechanical viewpoint as interfaces endowed with a
specific behavior under normal and shear loading.

This paper will focus on the particular case of micro-fractures, i.e., discontinuities with small extension
when compared to the size of the representative elementary volume of the material. The homogenization-based
approaches provide an appropriate framework for constitutive modeling whenever the network if discontinuities
present in the medium is sufficiently dense. In this perspective, strength, deformation, and permeability coupling
of cracked and fractured materials have been widely investigated in literature during past decade. Representative
works include references [1–10], to cite a few.

The main purpose of the present contribution is to extend the formulation proposed by Maghous et al. [7],
related to the particular case of a single family of short fractures distributed parallel in the matrix, to a configuration
of two families of short fractures. Furthermore, particular emphasis is given to the randomly oriented micro-
fractures (isotropic case) already demonstrated in Maghous et al. [8] and Aguiar and Maghous [10].

2 Micromechanics

The description of the mechanical behavior of heterogeneous media is a complex task from the mathematical
viewpoint due to the morphological complexity of these materials. In this sense, the homogenization theory has
proven to be an efficient tool, because it allows transforming the heterogeneous medium into an equivalent homo-
geneous medium and consequently simplifies the mathematical treatment of the problem. Since microfractures are
randomly distributed in the medium, to apply the homogenization theory to microfractured materials it is neces-
sary to considers a volume containing a sufficiently large number of microfractures so that the volume statistically
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represents the average behavior of the material anywhere in the structure. This volume is called representative
elementary volume (REV) and must meet the scale separation condition: (d ≪ l ≪ L). The typical length scale
l of the REV should be small enough as compared to the characteristic dimension L of the whole structure, so as
to enable the use of the differential tools of continuum mechanics. In addition, l should also be large enough as
compared to the characteristic length d of the heterogeneities to ensure statistical representativeness [4, 9].

2.1 Hill’s lemma for the fractured media

We will use the notation Ω to represent all the domain of the REV and ω to characterize all the volume of the
microfractures. At the scale of the REV (microscopic scale), each fracture is modeled as an interface ωi, in which
the orientation is defined by a normal unit vector ni, as represented by the Fig. 1.
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Figure 1. Representative elementary volume and loading mode (Adapted from Aguiar and Maghous [10])

The solid matrix fills the domain Ω\ω, where symbol “\” stands for the set difference. Note that strains and
stresses within the heterogeneous medium are defined on the solid matrix domain Ω\ω only, and not on the whole
REV. Throughout the paper, symbol ⟨·⟩ denotes the volume average over the solid matrix, as indicated by [8, 10]:

⟨·⟩ = 1

|Ω|

∫
Ω\ω

· dV . (1)

The loading applied to the REV (see Fig. 1) is defined by homogeneous strain type boundary conditions on
the boundary ∂Ω:

ξ (x) = ∈ · x ∀x ∈ ∂Ω (2)

where ξ represents the displacement field, ∈ is the macroscopic strain, and x is the position vector.
Hill’s lemma extended to the particular situation of fractured medium, established by Maghous et al. [7], for

any statically admissible stress field σ and any kinematically admissible displacement field ξ, takes the form:

⟨σ⟩ : ∈ = ⟨σ : ε⟩Ω\ω +
1

|Ω|

∫
ω

T ·
[
ξ
]
dS (3)

in which, the term T is the surface forces acting on the faces of each fracture and
[
ξ
]

is the displacement jump ob-
served at each discontinuity. Since Hill’s Lemma is valid for any stress and strain fields, not necessarily correlated,
taking a symmetric and uniform tensor σ, the macroscopic strain can be written as:

∈ = ⟨ε⟩+ 1

|Ω|

∫
ω

[
ξ
] s
⊗ n dS (4)
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where symbol
s
⊗ refers to the symmetric part of dyadic product:

(
u

s
⊗ v

)
ij
= (uivj + viuj) /2 and n = ni along

ωi. Therefore, eq. (4) shows that the macroscopic strain contains two contributions, one from the solid matrix and
the other one from the discontinuities.

2.2 Elastic Homogenization Framework

This section describes the homogenized elastic behavior of a medium with a short fracture distribution. In
the context of linear elasticity, the stress σ and strain ε fields in the matrix are related by means of the fourth-order
stiffness tensor Cs. While the displacement jump

[
ξ
]

is related to force vector T through elastic stiffness k = ki

as a function of the local coordinate system (ti, t
′
i, ni) of each fracture ωi, illustrated in Fig. 1 [11, 12]. Both

relationships are presented in the eq. (5):

 σ = Cs : ε in Ω\ω (a)

T = σ · n = k ·
[
ξ
]

along ω = ∪
i
ωi (b)

(5)

For the sake of clarity, except when necessary, the subscript (i) referring to fracture ωi will be omitted in
subsequent developments. In particular, (t, t′, n) will generically denote the orthonormal frame related to any
fracture of the set ω = ∪

i
ωi. Therefore, the tensor k will be expressed in the local coordinate system as:

k = kn n⊗ n+ kt (t⊗ t+ t′ ⊗ t′) (6)

where kn and kt respectively represent the normal and tangential stiffness components of the fracture, expressed in
(Pa/m). These quantities are usually obtained from laboratory tests performed on specimens containing a single
fracture. Further details related to the physical interpretation and identification procedures of these parameters are
presented in Bandis et al. [11] or Goodman [12]. Note that the particular case of discontinuities that do not trans-
mit stresses (cracks) can be included in the above formulation by considering a null value for the corresponding
stiffness (kn = 0 and kt = 0).

The loading condition (eq. (2)) associated with the state equations (eq. (5)) define the pair
(
σ, ξ

)
as the

solution of the elastic concentration problem. Considering that in the homogenized medium the macroscopic
strain ∈ is constant on the boundary of the REV, it can be shown (see Zaoui [2]) that the local strains ε (x) are
linearly related to the equivalent strains ∈ according to:

ε (x) = A (x) : ∈ (7)

in which A characterizes the fourth-order strain concentration tensor. In contrast to the continuous framework in
which relationship ⟨A⟩ = I is valid, the analysis involving discontinuities takes the average of the concentration
tensor over the REV to a non-unitary value ⟨A⟩ ≠ I (see Maghous et al. [7]).

The classical reasoning in linear elastic homogenization describes the macroscopic elastic behavior law of a
fractured medium by means of relationship relative stresses Σ and strains ∈ at the macroscopic scale through the
fourth-order homogenized elastic stiffness tensor Chom [2]:

Σ = Chom : ∈ with Chom = ⟨Cs : A⟩. (8)

When a composite consists of a matrix phase (s) and n phases of inclusions (i), the eq. (8), referring to Chom,
takes the following expression:

Chom = Cs +

n∑
i=1

fi
(
Ci − Cs

)
: ⟨A⟩Ωi (9)

in which fi and Ci are respectively the volume fraction and the elastic stiffness tensor of the phase (i), while ⟨A⟩Ωi

represents the average of the strain concentration tensor in phase (i).
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In the context of Eshelby’s equivalent inclusion theory, the approach makes use of the Mori-Tanaka scheme
to determine ⟨A⟩Ωi

and formulates the general estimate for the homogenized elastic moduli:

Chom
MT = Cs +

n∑
i=1

fi
(
Ci − Cs

)
:
[
I+ P :

(
Ci − Cs

)]−1
:
〈[

I+ P :
(
Ci − Cs

)]−1
〉−1

Ω
(10)

where P defines the Hill tensor and I characterizes the fourth-order identity tensor.

3 Homogenized elastic properties of fractured material

In this section we will use eq. (10) to address particular cases of materials with embedded microfractures,
aiming to obtain their homogenized elastic properties. From this perspective, fractures are modeled geometrically
as oblate ellipsoids (spheroids) and their orientation is associated with the orthonormal frame (t, t′, n). As illus-
trated in Fig. 2, the shape of this spheroid is defined by its largest radius a = a1 = a2, and by its smallest radius
c = a3, which determines its thickness. The aspect ratio of the spheroid is given as X = c/a and for them to
correctly represent the fracture geometry it is necessary that X ≪ 1.

1
a a=

2 1
a a a= =

3
a c a= 

n

t't

a

2c

Figure 2. Fracture modeled as oblate spheroid

Considering that the solid matrix material is homogeneous and isotropic, the associated stiffness tensor takes
the following form:

Cs = 3ksJ+ 2µsK (11)

where ks and µs are respectively, the bulk and shear modulus. The fourth-order tensors J and K are defined as:

J =
1

3
1⊗ 1 and K = I− J. (12)

First we consider a single fracture family, i.e., all fractures of this family have the same properties, oriented
along the fixed normal unit vector n, leading to a solution with parallel fractures distributed in the matrix. The
volume fraction of fractures in the medium is defined by:

f =
4

3
πϵX (13)

where ϵ = Na3 represents the fracture density parameter associated with the set of parallel fractures [1, 4], which
can be seen as the damage parameter on the macroscopic scale and N is the number of fractures per unit volume.

Using the Mori-Tanaka scheme, the expression of Chom for the fractured medium is given by eq. (14) such as
[7, 8]:
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Chom = lim
X→0

[(
Cs + f Cf :

(
I+ P :

(
Cf − Cs

))−1
)
:
(
I+ f

(
I+ P :

(
Cf − Cs

))−1
)−1

]
(14)

in which P = P (X,n) is the Hill tensor relative to the parallel fracture family, that depends on the aspect factor
X and the orientation n of oblate spheroids. The components of the Hill tensor can be found in Handbooks (see
Eshelby [13], Mura [14] or Nemat-Nasser and Hori [15]). At eq. (14), the tensor Cf relates to fracture stiffness k
by means of [7]:

Cf = 3Xa

(
kn − 4

3
kt

)
J+ 2XaktK. (15)

The estimate derived from the Mori-Tanaka scheme (eq. (14)), considering that the frame (t, t′, n) coincides
with (e1, e2, e3) is defined by the following non-zero components of the equivalent elastic stiffness tensor Chom:

Chom
1111 = Chom

2222 = (3ks + 4µs)
κ2 + π

(
1 + 16

3 ϵ
)
κ1 (1− κ1)

3κ2 + 3πκ1 (1− κ1) + 4πϵ

Chom
3333 = (3ks + 4µs)

κ2 + πκ1 (1− κ1)

3κ2 + 3πκ1 (1− κ1) + 4πϵ

Chom
1122 = Chom

2211 = (3ks − 2µs)
κ2 + π

(
κ1 +

8
3ϵ
)
(1− κ1)

3κ2 + 3πκ1 (1− κ1) + 4πϵ

Chom
1133 = Chom

2233 = Chom
3311 = Chom

3322 = (3ks − 2µs)
κ2 + πκ1 (1− κ1)

3κ2 + 3πκ1 (1− κ1) + 4πϵ

Chom
2323 = Chom

1313 = µs 4κ3 + π (1− κ1) (1 + 2κ1)

4κ3 +
16
3 πϵ (1− κ1) + π (1 + 2κ1) (1− κ1)

; Chom
1212 = µs

(16)

where

κ1 =
3ks + µs

3ks + 4µs
; κ2 =

3kna

3ks + 4µs
; κ3 =

3kta

3ks + 4µs
; κ4 =

µs

3ks + 4µs
. (17)

Such an estimate is given in Maghous et al. [7] and validated with finite element solutions based on the
cohesive model (see Needleman [16]) by Maghous et al. [8].

We consider now the case of a material with two embedded families of microfractures, the orientation of each
fracture family is defined in the 3D space by two spherical angular coordinates θ ∈ [0, π] and φ ∈ [0, 2π]. Although
the fractures exhibit the same shape, their size can be different, which implies different properties. Therefore, two
volume fractions (f1, f2) will be considered. Referring to eq. (13) (f1, f2) are related to aspect ratios (X1, X2),
average radii (a1, a2) and fracture density parameters (ϵ1, ϵ2). The Mori-Tanaka estimate (eq. (14)) is given by:

Chom = lim
X1,X2→0

{[
Cs + f1 Cf

1 :
(
I+ P1 :

(
Cf

1 − Cs
))−1

+ f2 Cf
2 :

(
I+ P2 :

(
Cf

2 − Cs
))−1

]
:[

I+ f1

(
I+ P1 :

(
Cf

1 − Cs
))−1

+ f2

(
I+ P2 :

(
Cf

2 − Cs
))−1

]−1
} (18)

Cf
1 and Cf

2 refer to the stiffness of fracture families and are defined by the same format indicated by eq. (15)
according to respective properties. We also introduce Hill tensor as P1 = P1 (X1, n1) and P2 = P2 (X2, n2). The
global frame (e1, e2, e3) is chosen as coincident with the local orientation (t, t′, n) of fracture family 1, making it
necessary to perform the rotation only for the second family of fractures, i.e., in the terms that have index 2 in the
eq. (18).

The estimate of the Mori-Tanaka scheme of eq. (18) for the particular case of spherical coordinates (θ, φ) =(
π
2 , 0

)
was given in homogenized flexibility Shom, since the size of the terms are smaller compared to equivalent

stiffness. Therefore, each non-zero component of the equivalent elastic flexibility tensor is defined by eq. (19),
remembering that the relationship Shom = Chom−1 is valid.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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Shom
1111 =

1

(3ks + 4µs)

12πϵ2 (κ1 − κ4)κ4 + (3πκ1κ4 + κ̃2)κ1

3κ4 (κ1 − κ4) (3πκ1κ4 + κ̃2)

Shom
1122 = Shom

2211 = Shom
1133 = Shom

3311 = Shom
2233 = Shom

3322 = −3ks − 2µs

18ksµs
; Shom

2222 =
3ks + µs

9ksµs

Shom
3333 =

1

(3ks + 4µs)

12πϵ1 (κ1 − κ4)κ4 + (3πκ1κ4 + κ2)κ1

3κ4 (κ1 − κ4) (3πκ1κ4 + κ2)

Shom
1212 =

1

µs

4κ̃3 +
16
3 πϵ2 (1− κ1) + π (1− κ1) (1 + 2κ1)

4κ̃3 + π (1− κ1) (1 + 2κ1)

Shom
2323 =

1

µs

4κ3 +
16
3 πϵ1 (1− κ1) + π (1− κ1) (1 + 2κ1)

4κ3 + π (1− κ1) (1 + 2κ1)

Shom
1313 =

1

µs

[
π2κ4 (ϵ1 + ϵ2) +

9
16π

2 (κ1 + κ4)κ4 +
π
4 (κ3 + κ̃3)

]
(κ1 + κ4) +

4
9π (κ3ϵ2 + κ̃3ϵ1) +

1
9κ4

κ3κ̃3[
9
16π

2 (κ1 + κ4)κ4 +
π
4 (κ3 + κ̃3)

]
(κ1 + κ4) +

1
9κ4

κ3κ̃3

(19)

where κ̃2 and κ̃3 refer are similar to the terms defined in eq. (17), but relate to the parameters of the second family
(kn2, kt2, a2).

The last case analyzed refers to the isotropic distribution of short fractures (randomly oriented in the matrix),
the orientation of each inclusion being defined in the 3D space by two spherical angular coordinates θ ∈ [0, π]
and φ ∈ [0, 2π]. In this perspective, the effective stiffness tensor can be estimated by the following Mori-Tanaka
scheme (eq. (20)), employing the same notation used in the case of parallel distributed fractures:

Chom = lim
X→0

[(
Cs + Cf : (I+ P : (Cf − Cs))

−1
)
:
(
I+ (I+ P : (Cf − Cs))

−1
)−1

]
(20)

where the operator •̄ applied on a quantity Q denotes the integral on the spherical coordinates θ ∈ [0, π] and
φ ∈ [0, 2π] (see Maghous et al. [7]):

Q =

∫ π

0

dθ

∫ 2π

0

4π

3
ϵXQ (θ, φ)

sin (θ)

4π
dφ (21)

The isotropic fracture distribution induces an isotropic homogeneous stiffness tensor, conveniently expressed
by [4]:

Chom = 3khomJ+ 2µhomK (22)

The homogenized bulk and shear moduli khom and µhom depend on the elastic properties of the constituents,
the fracture radius a, and the fracture density parameter ϵ (Aguiar and Maghous [10]):

khom =
ks

1 + ϵMk
; µhom =

µs

1 + ϵMµ
(23)

where dimensionless functions Mk (k
s, µs, akn, akt) e Mµ (k

s, µs, akn, akt) are given by eq. (24):

Mk =
4π (κ1 − κ4)

3κ2 + 3πκ1 (1− κ1)
e Mµ =

16πκ4

15

6κ2 + 4κ3 + 9πκ4 (3κ1 + κ4)

(3πκ1κ4 + κ2) [4κ3 + 9πκ4 (κ1 + κ4)]
(24)

Note that for the described formulation it is necessary to know at least two parameters among (ϵ,N , a) that
quantify the damage. The particular case of cracked material (see Dormieux and Kondo [9]) is retrieved by setting
k = 0 in the scheme of the Chom. In this situation, the average fracture radius a and the number of fractures per
unit volume N are naturally eliminated from eq. (24), only being indirectly evaluated by means of ϵ which reduces
the number of parameters that quantify the damage to just one.
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4 Conclusions

In the present paper, the concepts of micromechanics applied to heterogeneous medium were presented in
order to describe a formulation for the homogenized elastic behavior of fractured materials. In this context, using
the tools of homogenization theory, especially the Mori-Tanaka scheme, the equivalent elastic properties of a
fractured material were determined in three different situations. The first approach is related to a material with
distribution of a single fracture family in the isotropic matrix and the results were determined through the non-
zero components of the homogenized elastic stiffness tensor. Then the particular configuration of the two fracture
families with perpendicular orientation was addressed. The two families exhibit distinct properties, which makes
the formulation more comprehensive and the results were presented by means of the homogenized elastic flexibility
tensor. It should also be emphasized that in the future we intend to present the results for the general case of two
families, considering generic angular coordinates. The last approach refers to the isotropic case, in which the
fractures are randomly distributed in the matrix and the results were demonstrated using the parameters khom and
µhom which constitute the homogenized elastic stiffness tensor, also isotropic.
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