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Abstract. Mixed finite element problems are a class of problems that arises when modeling several physical
phenomena, such as in computational fluid dynamics, structural analysis, optimization, etc. Designing efficient
iterative schemes for such a family of approximations has been the subject of several works in the past decades.
However, its success is intimately related to the proper definition of a preconditioner, i. e., the projection of the
original algebraic system to an equivalent one with better spectral properties. In recent work, we have proposed
a new class of H(div)-conforming finite element spaces with element-wise constant divergent. This family of
elements was designed to improve reservoir simulation computational cost and are obtained by choosing the lower
order space with piece-wise constant normal fluxes incremented with divergence-free higher-order functions. In
this work, we propose an iterative scheme to solve problems arising in the context of the above mentioned element-
wise constant divergence approximation spaces. The strategy consists on using the matrix of linear fluxes as a
preconditioner to solve the higher-order flux problem. The latter is solved iteratively by means of a conjugate
gradient scheme. In the presented numerical tests, this strategy has shown to be convergent in a few iterations for
different problems in 2D and 3D. In addition, as internal fluxes are condensed, only boundary variables need to
be computed. This strategy relates to the MHM technique and can be efficiently used to access fast multi-scale
approximations in future work.
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1 Introduction

Mixed finite element are a class of problems which arises when modeling several physical phenomena, such
as in computational fluid dynamics, structural analysis, optimization etc. It is named as mixed because more than
one field is approximated, and usually one of them plays the role of Lagrange multipliers. As it consists in a saddle
point problem, direct solvers (usually based on Gaussian elimination or LU/Cholesky decomposition) may suffer
with low convergence due to the frequent presence of null pivots. In addition, iterative methods are preferred
when solving both large and sparse problems, as they present much lower computational cost, when properly
preconditioned [1].

The main issue, when using iterative methods, is to ensure its convergence in an acceptable number of iter-
ations, which may be related to the spectral properties of the corresponding matrix. The solution of saddle point
problems may be subdivided into two categories[1]: segregated and coupled methods. In the first, the fields being
approximated are computed separately and most of them are variations of the Uzawa’s method [2] while in the
latter an approximation for both field is obtained simultaneously (see for instance [1, 3, 4] for a complete review
on the subject).

Using low-order preconditioners to approximate high-order discretizations is a well known technique, which
has been successfully applied specially to spectral discretizations. Its first use dates the 80’s with the work of
Orszag [5], where finite difference techniques were applied as preconditioners to spectral discretizations. Still in
the context of spectral methods, this idea has been further developed to several different applications such as the
incompressible Navier-Stokes equations[6] (see for instance [7] and references therein).

More recently, [8], presented low-order preconditioning technique based on nodal high order triangular finite
elements, with nodes not necessarily coincident in both scales, but connected by means of a least-squares operator.

A technique for preconditioning high-order Lagrangian finite elements bases on an auxiliary linear element
stiffness matrix is also presented by [9], where the authors obtain a preconditioner with condition number inde-
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pendent of the mesh size.
This idea has also been explored in other physical problems such as elasticity [10], the Maxwell’s equations

[11]. Particularly, in the last example, Pazner et al. [11] developed several low-order preconditioners exploring
the de Rham complex properties, based on the spectral equivalence of low-order discretizations for higher-order
H(div) and H(curl) spaces demonstrated by [12].

In this work, we extend this principle also for conformingH(div) finite element discretizations. More specif-
icaly, we develop an iterative scheme over a particular H(div)-FE space, with element-wise constant divergent.
This FE space is suitable for simulations involving element-wise constant pressures or source terms, with a lower
computational cost and has been introduced by the authors in [13]. Roughly speaking, the method consists in
uncoupling constant and higher-order normal fluxes and use the former as a preconditioner for solving the latter.

The paper is organized as follows: in Section 2, a model problem is presented; in Section 3 the model problem
is solved by means of the element-wise divergence constant finite element space; both 2D and 3D numerical results
are presented in Section 4 and concluding remarks are drawn in Section 5.

2 Model problem

Firstly, we consider an open domain Ω with a Lipschitz boundary Γ = ΓD ∪ ΓN , where ΓD and a ΓN refers
to partitions corresponding to Dirichlet and Neumann conditions, respectively. The model problem considered
throughout this work is the mixed version of the Poisson’s equation, which reads: find the flux σ ∈ H(div,Ω) and
pressure u ∈ L2(Ω) fields such that

σ = −K∇u in Ω,

∇ · σ = f in Ω,

u = uD on ΓD,

σ · n = g on ΓN ,

(1)

where K is the permeability tensor, uD ∈ H1/2(ΓD), g ∈ L2(ΓN ) and f ∈ L2(Ω) are given functions and n is
the outward unit vector.

2.1 Weak statement

The standard construction of a weak statement for problem (1) via Galerkin’s method is defined as: find
σ ∈ H(div,Ω), with σ · n|ΓD

= g, and u ∈ L2(Ω) such that

∫
Ω

K−1σ ·wσ dx−
∫

Ω

u∇ ·wσ dx = −
∫

ΓD

uDJwσKds ∀wσ ∈ H(div,Ω),∫
Ω

∇ · σwu dx =

∫
Ω

fwu dx ∀wu ∈ L2(Ω),

(2)

and the discretization of (2) can be performed by means of finite element methods [14].
For instance, to discretize (2) in terms of a FE approximation we define a single discretization parameter

γ = (h, k), where h represents the mesh characteristic size and k is related to the polynomial degree. We also
consider a conformal partition Th = K and introduce the following finite dimensional spaces:

Vγ = {σ ∈ H(div,Ω) : σ|K ∈ Vk,K ∈ Th} , (3)

W γ =
{
u ∈ L2(Ω) : u|K ∈Wk,K ∈ Th

}
. (4)

Then, the finite dimensional version of problem (2) can be stated as: find σγ ∈ Vγ , with σγ ·n|ΓD
= g, and

uγ ∈W γ such that

∫
Ω

K−1σγ ·wγ
σ dx−

∫
Ω

uγ ∇ ·wγ
σ dx = −

∫
ΓD

uDJwγ
σKds ∀wγ

σ ∈ Vγ ,∫
Ω

∇ · σγwγu dx =

∫
Ω

fwγu dx ∀wγu ∈W γ .

(5)
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3 Element-wise divergence constant FE spaces and the iterative scheme

In a recent work [13], we coauthored a work that introduced an element-wise divergence-constant flux ap-
proach in the context of exact finite element de Rham approximations. It consists in a filtered version of the
standard H(div) approximations suitable for particular cases where the source term f is an element-wise constant
function. It may be noticed, however, that it does not represent a limitation of the iterative method presented in the
following.

More specifically, these element-wise divergence constant FE spaces are defined as

Vγ
c = {σγc ∈ Vγ : ∇ · σγc ∈W0} , (6)

and are built by extending constant normal flux functions over the facets σ̄γ ∈ V̄γ (RT0 Raviart-Thomas finite
elements [15]) to the interior of the element. The remaining functions are composed of divergence-free internal
(namely bubble functions) and edge higher-order functions σ̊γ ∈ V̊γ , such that

V̄γ = {σ̄γ ∈ H(div,Ω) : ∇ · σ̄γ = c, γ = (h, 0)} , (7)

V̊γ = {σ̊γ ∈ H(div,Ω) : ∇ · σ̊γ = 0} , (8)

where c is an arbitrary constant and the following sum holds Vγ
c = V̄γ ⊕ V̊γ .

Under such considerations, the formulation (2) employing element-wise divergence constant spaces can be
rewritten and is stated as: find σ̄γ ∈ V̄γ , with σ̄γ · n|ΓN

= ΠN
γ σ̄γN , σ̊γ ∈ V̊γ , with σ̊γ · n|ΓN

= ΠN
γ σ̊γN , and

uγ0 ∈W
γ
0 such that

∫
Ω

K−1σ̄γ ·wγ
σ̄ dx +

∫
Ω

K−1σ̊γ ·wγ
σ̄ dx−

∫
Ω

uγ0 ∇ ·w
γ
σ̄ dx = −

∫
ΓD

Jwγ
σ̄KuDds ∀wγ

σ̄ ∈ V̄γ ,∫
Ω

K−1σ̄γ ·wγ
σ̊ dx +

∫
Ω

K−1σ̊γ ·wγ
σ̊ dx = −

∫
ΓD

Jwγ
σ̊KuDds ∀wγ

σ̊ ∈ V̊γ ,∫
Ω

∇ · σ̄γwγudx =

∫
Ω

fwγudx ∀wγu ∈W0.

(9)

Formulation (9) can also be represented in a hybridized form, by weakly imposing continuity of σ̄γ by a
constant Lagrange multiplier. For this purpose we define the following FE space:

Λγu = {µγ ∈W γ(ΓK)}. (10)

In such case, the formulation is stated as find σ̄γ ∈ V̄γ , with σ̄γ · n|ΓN
= ΠN

γ σ̄γN , σ̊γ ∈ V̊γ , with
σ̊γ · n|ΓN

= ΠN
γ σ̊γN , uγ0 ∈W0 and µγ ∈ Λγu such that

∫
Ω

K−1σ̄γ ·wγ
σ̄ dx +

∫
Ω

K−1σ̊γ ·wγ
σ̄ dx

−
∫

Ω

uγ0 ∇ ·w
γ
σ̄ dx +

∫
Γe

µγJwγ
σ̄K ds = −

∫
ΓD

uDJwγ
σ̄Kds ∀wγ

σ̄ ∈ V̄γ ,∫
Ω

K−1σ̄γ ·wγ
σ̊ dx +

∫
Ω

K−1σ̊γ ·wγ
σ̊ dx =

∫
ΓD

uDJwγ
σ̊Kds ∀wγ

σ̊ ∈ V̊γ ,∫
Ω

∇ · σ̄γwγudx =

∫
Ω

fwγudx ∀wγu ∈W
γ
0 ,∫

Γe

wγµJσ̄
γK ds = 0 ∀wγµ ∈ Λγu.

(11)

Problem (11) can also be represented in a matrix form as
Kσ̄σ̄ Kσ̄σ̊ Bσ̄ Lσ̄

Kσ̊σ̄ Kσ̊σ̊ 0 0

BT
σ̄ 0 0 0

LTσ̄ 0 0 0





Σ̄

Σ̊

U0

M


=



fσ̄

fσ̊

fu0

0


. (12)
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Foz do Iguaçu, Brazil, November 21-25, 2022



A low-order preconditioner for high-order element-wise divergence constant finite element spaces

Static condensation [16] can be applied to problem (12) where both Σ̄ and U0 condensed onto the Lagrange
multipliers M, resulting in a matrix problem of the formK̂µµ K̂µσ̊

K̂σ̊µ K̂σ̊σ̊

M

Σ̊

 =

f̂µ

f̂σ̊

 . (13)

Some properties of problem (13) needs to be highlighted. First, V̊γ is constructed in a hierarchical frame-
work and is formed by edge and internal (bubble) functions only. In our computations, the bubble functions are
also condensed onto M, which means that the only variables of Σ̊ consist of higher-order edge fluxes. Another im-
portant feature is that the matrix K̂µµ corresponding to the coupling of the constant pressure Lagrange multipliers
is negative definite.

The iterative strategy we propose in this work consists on solving (13) in a two-step algorithm. To properly
define it, we first rewrite problem (13) as

K̂µµM = f̂µ − K̂µσ̊Σ̊ (14)(
K̂σ̊σ̊ − K̂σ̊µK̂−1

µµK̂µσ̊

)
Σ̊ = f̂σ̊ − K̂σ̊µK̂−1

µµ f̂µ (15)

Then, the algorithm consists of applying the conjugate gradient method to problem (15) and a block diagonal
preconditioner where the diagonal blocks are extracted from K̂σ̊σ̊ . Notice that this step requires the decomposition
of matrix K̂µµ which has dimension independent of the polynomial degree, as the internal fluxes and pressure are
condensed and do not contribute to the size of the global system. Finally, once the system of the higher-order
normal fluxes Σ̊ is converged, M can be computed explicitly from (14) and, consequently, the primitive variables
U0 and Σ̄ can be recovered.

4 Numerical Results

In this section we present a collection of numerical tests to evaluate the iterative scheme previously presented.
In all cases a tolerance of ε = 10−10 (Euclidean norm) was taken in the iterative process and the permeability tensor
is equal to the identity, namely K = I. The formulation is evaluated for both 2D and 3D cases. In the 2D example,
two cases are tested: in the first, a harmonic analytic function is taken while in the second the analysis is carried
with a zero function on most parts of the computational domain, but with a peak pressure close to the center. For
the 3D case, a polynomial function was used. In all cases both iteration numbers and DoF’s are reported.

Another important feature concerns the boundary conditions enforcement. In all cases Dirichlet BC were
considered for all boundaries. However, to suppress this variability in the analysis (type of BC), all BC DoF’s were
condensed.

Finally, in the 2D examples, quadrilateral finite elements are employed while hexahedral meshes are adopted
in the 3D case.

4.1 2D example

Two 2D cases were considered. In the first, a harmonic analytic solution for the pressure field is taken, while
in the second a rough function with a peak is chosen. Both expressions are given by (notice that the superscripts 1
and 2 denotes the first and second cases, respectively):

u1 = sin(πx) sin(πy),

u2 = (22−(−2π+15x)2−(−2π+15y)2)(5−(−2π+15x)2−(−2π+15y)2) (−2π + 15x) .
(16)

Expressions for the flux field and source term can be easily derived from (16) and are omitted here.
The problem is solved in the computational domain Ω = [0, 1]× [0, 1]. The meshes employed in the analyses

ranges from nx = ny = 2 up to 200. In all cases an uniform discretization was adopted, i.e., the same number of
elements is taken for both x and y directions.

As previously mentioned, static condensation is applied to reduce the number of global degrees of freedom.
In Table 1, we present the original global system size compared to the condensed one. Notice that the condensed
problem has dimension independent on the polynomial degree. In Fig. 1 we present the plots with the number of
CG iterations needed to reach convergence for polynomial degrees k = 1 up to 5.
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Table 1. 2D example: number of equations before and after static condensation of the decomposed matrix.

nx
#Equations

k = 1 k = 2 k = 3 k = 4 k = 5 Condensed

2 28 48 76 112 156 4

5 130 225 370 565 810 40

10 460 800 1,340 2,080 3,020 180

15 990 1,725 2,910 4,545 6,630 420

20 1,720 3,000 5,080 7,960 11,640 760

25 2,650 4,625 7,850 12,325 18,050 1,200

30 3,780 6,600 11,220 17,640 25,860 1,740

35 5,110 8,925 15,190 23,905 35,070 2,380

40 6,640 11,600 19,760 31,120 45,680 3,120

45 8,370 14,625 24,930 39,285 57,690 3,960

50 10,300 18,000 30,700 48,400 71,100 4,900

60 14,760 25,800 44,040 69,480 102,120 7,080

70 20,020 35,000 59,780 94,360 138,740 9,660

80 26,080 45,600 77,920 123,040 180,960 12,640

90 32,940 57,600 98,460 155,520 228,780 16,020

100 40,600 71,000 121,400 191,800 282,200 19,800

120 58,320 102,000 174,480 275,760 405,840 28,560

140 79,240 138,600 237,160 374,920 551,880 38,920

160 103,360 180,800 309,440 489,280 720,320 50,880

180 130,680 228,600 391,320 618,840 911,160 64,440

200 161,200 282,000 482,800 763,600 1,124,400 79,600

101 102 103 104 105

10

20

30

Number of elements

N
um

be
ro

fi
te

ra
tio

ns

k = 1
k = 2
k = 3
k = 4
k = 5

(a) Case 1
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(b) Case 2

Figure 1. 2D harmonic function: number CG iterations for each iterative method.

As may be noticed, the proposed iterative scheme seems to be affected by the polynomial degree. For case 1,
the number of iterations needed to convergence reaches a certain level and do not change with mesh refinement.
However, when compared to case 2, the number of CG iterations increases with mesh refinement, reaches a max-
imum value and then decreases to a constant level, slightly lower than in the previous case. It may be related to
the fact that the solution for both pressure and flux approaches zero in most of the computational domain in case
2, which coincides with the initial guess in the iterative scheme.

4.2 3D case

In this case the iterative scheme is evaluated for a 3D case whose analytic solution for the pressure field is
given by:

u = (x− 1)x (y − 1) y (z − 1) z (17)
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The computational domain is taken as the unit cube Ω = [0, 1]× [0, 1]× [0, 1] and uniform hexahedral finite
element meshes with nx = ny = nz ranging from 2 to 16 are considered for its discretization. Once again uniform
discretization with the same element length in all directions was adopted.

As in the 2D cases, we present in Table 2 the reduction in the number of equations achieved with the static
condensation technique. In addition, the number of CG iterations needed to reach convergence is presented for
k = 1 up to 5 in Fig. 2.

Table 2. 3D case: number of equations before and after static condensation of the decomposed matrix.

nx
#Equations

k = 1 k = 2 k = 3 k = 4 k = 5 Condensed

2 156 460 1,052 2,028 3,484 12

3 432 1,323 3,132 6,183 10,800 54

4 912 2,864 6,928 13,872 24,464 144

5 1,650 5,275 12,950 26,175 46,450 300

6 2,700 8,748 21,708 44,172 78,732 540

7 4,116 13,475 33,712 68,943 123,284 882

8 5,952 19,648 49,472 101,568 182,080 1,344

9 8,262 27,459 69,498 143,127 257,094 1,944

10 11,100 37,100 94,300 194,700 350,300 2,700

11 14,520 48,763 124,388 257,367 463,672 3,630

12 18,576 62,640 160,272 332,208 599,184 4,752

13 23,322 78,923 202,462 420,303 758,810 6,084

14 28,812 97,804 251,468 522,732 944,524 7,644

15 35,100 119,475 307,800 640,575 1,158,300 9,450

16 42,240 144,128 371,968 774,912 1,402,112 11,520

101 102 103
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Figure 2. 3D problem: number CG iterations for each iterative method.

As may be noticed, in the 3D example presented, the proposed iterative approach performed similarly to the
first 2D example, with the number of iterations increasing with mesh refinement up to a certain level kept constant.

5 Conclusions

In this work we presented an iterative scheme for higher-order flux computations based on a linear-flux
preconditioner. A modified H(div)-conforming space, namely H(div)-constant, with element-wise constant flux
divergence is employed. The flux field is partitioned into constant and higher order normal components whilst
the first is used as a preconditioner to approximate the latter. In this approach, the constant flux component is
hybridized and a static condensation procedure is applied, generating a 2×2 block algebraic system with negative-
definite and positive-definite diagonals. This strategy expressively reduced the number of DoF’s in the decomposed
matrix and circumvented the original saddle point structure.

The results presented in section 4 allow us to conclude that the number of CG iterations increases with
polynomial degree for the a general case and do not increase with mesh refinement.
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One of the key-points in the presented method is the uncouple of constant and higher-order normal fluxes.
Different results can be obtained in the case where the constant flux is employed as preconditioner for the full
coupled flux field and additional tests need to be performed in this direction. Another strategies involving iterative
schemes are currently under development by our research group, employing for instance multi-grid approaches.
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