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Abstract. Rotating components play a crucial role in mechanical systems and are present in several industrial
areas. These systems suffer from the adverse actions of loads and environmental condition. Thus, condition-based
maintenance of these components is a fundamental technique to synchronize and support maintenance schedules,
and machine learning algorithms are nowadays supporting these tasks. This paper aims to present a comparison
between Monte Carlo Dropout and Variational Inference techniques applied to Bayesian neural network models in
damage dignostics of ball bearings. The Bayesian Convolutional Neural Networks were tested, evaluated, validated
against the physical data, and their prediction performances were compared. Results showed that both models had
high performance in diagnosis. The comparison between the methods applied to Bayesian neural network models
showed similar results but each method present their own characteristics that could provides advantages in certain
specific situations.

Keywords: Rotating Machinery, Bayesian Neural Networks, Diagnosis.

1 Introduction

It is widely known that rotating components play a crucial role in mechanical systems and are present in a
wide variety of projects including power generation, manufacturing, and transportation. Inherently to the nature
of power transmission components, these systems suffer from the adverse effect of wear, overloading, assembly
errors, lack of lubrication, etc. All these bad conditions can lead machine malfunction, which can result in accidents
and loss of resources. In this context, condition-based maintenance of these components is a fundamental technique
to synchronize and support maintenance schedules.

Machine fault detection using artificial intelligence techniques has been studied in the past decade and a
thorough review on this subject was presented by Liu et al. [1]. The approach to Bayesian inference by applying
the Monte Carlo Dropout technique was first described in the work of Gal and Ghahramani [2]. This technique
has been employed in situations where a higher diagnostic reliability is needed, such as in the medical field as in
the works of Lee and Kim [3]] and Ju et al. [4]. Other applications can be found in the reliability of nuclear power
plants in Bae et al. [3]] and for monitoring of rotorcraft icing from aeroacoustics time-series data in Tong et al. [6].

Peng et al. [7]] proposed two distinct architectures of Bayesian neural networks (BNN) that employed Vari-
ational Inference (VI) technique aiming to estimate the remaining useful life (RUL) of ball bearings of turbofan
engines. In this work, whereas the first BNN received complex features of time-fequency signals as input, the sec-
ond received time series; results for the RUL in terms of probability distributions were presented and a comparison
between the real life of the ball bearing in experiments, for two studied architectures of BNN the RUL estimation
shown. Wang et al. [8] proposed a comparison between BNN that uses VI and a Bayesian logistic regression
(BLR) and the techniques were tested experimentally for the condition monitoring of a intern combustion engine,
the results has a better performance in relation of common techniques. The work proposed by de Moraes et al. [9]
presents a damage diagnostic of different failures in ball bearings starting from generation of vibration images of
time signs; these data feds a convolutional BNN with VI and in the tests were done diagnostics of different kind of
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damages with different levels of severity, and it allowed the uncertainties to be quantified.

The main objective of this paper is to gather an understanding of different BNN techniques and bring them
into the context of rotating machinery diagnostics. The research question of this research is: which parameters
favor the choice of one technique over the other? Finally, the specific aims are: (i) to build the BNN models; (ii)
to train, test and evaluate the BNN models; (iii) to compare the performance of the BNN models.

Beyond this introductory section, the paper is outlined in the methodology which is presented in Section [2}
The main results and discussion about them are presented in Section[3] The final remarks and conclusions about
this paper are presented in Section 4]

2 Methodology

2.1 Bayesian Inference

Bayesian models are produced through inference of their parameters, that is, by determining the probability
distribution of the parameters by using prior information from available data. The formulation of Bayesian infer-
ence begins by considering a data set D, and the model parameters as . When Bayes’ Theorem is applied we have
the following equation:

00
[ p(DIo")p(0)d6"

where, p(D|0) are the likelihood function, p(6) is the prior distribuitions of the parameters 6, and [ p(D|6")p(8")d6’
is the evidence, which is a likelihood function in which some parameters have been marginalized.

p(0|D) ()

2.2 Monte Carlo Dropout

The dropout procedure was formalized by Srivastava et al. [10] as a regularization method for neural net-
works, and consists of modeling the probability of a neuron participating or not in the model by a Bernoulli
distribution. By applying the Monte Carlo test to neural network multiple predictions are obtained on the neural
network with dropout. According to Gal and Ghahramani [2]] optimization based on stochastic gradient descent
combined with the application of dropout during training produces the occurrence of the deep Gaussian process
described by Damianou and Lawrence [11] responsible for approximating Bayesian inference in the model. To de-
termine the uncertainty related to prediction, multiple predictions are sampled from a neural network with dropout,
and the uncertainty can be determined by calculating the standard deviation, the entropy, and the negative log
likelihood.

Finally, the response of the Monte Carlo dropout neural network is given by the average of its predictions
combined with the uncertainty calculated by one of the methods described. In this paper, the standard deviation
method was chosen for the attribution of uncertainty because it is related to direct values of the probability scale
of the softmax function applied in the last layer of the network.

2.3 Variational inference

Once the central purpose of parametric Bayesian methods is obtaining the posterior distribution of the non-
observable parameters 6 that is density function, which represents the uncertainties over 8, with the observable
data set D. In general, the integration of the evidence of eq. (I)) is untreatable. Therefore, variational inference
is employed to approximate the posterior analytically. A family of treatable distributions Q is chosen with the
objective of to search, between the probability density functions ¢(6) that belongs to the family, a probability
density function ¢*(6) in the way of:

q"(0) = argminD 1, (¢(0)|[p(D|0)), )
where, D 1,(q(0)||p(D)|0) is the Kullback-Leibler divergence between ¢(6) and p(D|6) that is given by:
Diccla@)1p(D10)) = [ 108 L q(0)a0. ®
p(D|6)

after some algebraic manipulations we can demonstrate that when the Dy is minimized, the evidence lower
bound objective (ELBO) function is maximized with respect of ¢(6). Finally:
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log p(D) = Dk 1.(q(0)|[p(0|D) + L(q(9))), “4)
thus, the ELBO function is the lower boundary of the evidence and it is treatable.

2.4 Data augmentation, Vibration Images and Neural Network Architecture

Data augmentation is a technique to creat a new samples from an already existing dataset, in which usually
only a few data points are known. In this technique, noise is added to copies of samples of the original dataset in
order to artificially generate more samples points. In this work, noise was added to the signal using the signal-to-
noise ratios (SNR) with the MatLab function White Gaussian Noise. This procedure was already used in in some
previous works [12]], [13].

As was done in the paper de Moraes et al. [9] to feed the Bayesian Convolution Neural Networks were used
vibration images. The raw data presented in [[14]] were transformed into images as the proposal of Hoang and Kang
[12].

To perform the comparison a common structure was found for both types of Bayesian models, in the Table[T]
all the constructive characteristics of the neural networks are shown. For the layers that contain in their name the
term Reparametrization, normal distributions were assumed for the parameters.

Table 1. Architecture of the Neural Networks Used

Layers Parameters  Value Parameters Value Parameters Value
Variational Inference Monte Carlo Dropout
Convolution 2D Reparametrization Convolution 2D Filters 60 Kernel Size 8 Activaation  Relu
Maxpolling 2D Maxpolling 2D Poll Size (2,2) - -
Convolutional 2D Convolutional 2D Filters 60 Kernel Size 3.,3) Activaation Relu
Maxpolling 2D Maxpolling 2D Poll Size 2,2) - -
Flatten Flatten - - - -
Dense Dense (with Dropout) Activation Relu Number of Neurons 90
Dense Dense (with Dropout) Activation Relu Number of Neurons 90
Dense Reparametrization Dense (with Dropout) Activation Relu Number of Neurons 90
Dense Dense Activation ~ Softmax Number of Neurons 10

Figure|l|shows the flowchart of the methodology of this work.
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Figure 1. Paper’s methodology flowchart.

3 Results and Discussion

As one of the main points of any Deep Learning model, training and validation play a central role in the
applicability of diagnostic techniques, an unsatisfactory performance in this aspect makes the project unfeasible.
In this sense, Figure [2h below shows a graph comparing the curves of training and validation accuracy over the
training epochs for the variational inference and Monte Carlo Dropout methods. Training was stopped at 200
epochs as the accuracy stabilized around 100 training epochs. As shown in the graph of Figure [Zh, the Bayesian
model with Variational Inference stands out by demonstrating a higher speed in training and a higher accuracy rate
against training data than the model with Monte Carlo Dropout. However, the model with Monte Carlo Dropout
demonstrated a better balance between test accuracy and validation accuracy, the point curves, from Monte Carlo
Dropout, demonstrate a much higher correlation over epochs than the solid lines from Variational Inference. Thus,
for this problem, the Monte Carlo Dropout technique tended to be able to produce a model that best generalized
the problem to the validation data, achieving superior accuracy with this data set.
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In order to highlight this capability of Monte Carlo Dropout relative to Variational Inference, a cross-validation
procedure was performed on the two models, the graph of Figure b, where the training and validation accuracy
data are shown for each of the ten different combination of samples in the procedure, called K-fold. The trend
observed in Figure [2h is again verified, the now supported by the cross validation data shown in Figure 2b. The
red dashed line representing the test accuracy with Monte Carlo Dropout is higher in all test K-folds finding its
best value near 95% accuracy, while the model with Variational Inference finds the best accuracy value near 90%,
maintaining an average test accuracy close to 87% accuracy.

a) Accuracy Curves b) Cross Validation Graph
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Figure 2. a) Graphic of accuracy versus number of epochs. b) Graphic of accuracy in each K-fold during cross-
validation.

The Figures 3] and f] shows the confusion matrices of the mean values calculated from a sample size of 500.
Comparing the two confusion matrices it is possible to note an equivalence between the methods in most classes
the Variational Inference (Fig. [) performed slightly better than the Monte Carlo Dropout model (Fig. [3). The
largest differences in accuracy were observed in the Outer Race 7 classes in favor of Variational Inference (Fig. )
and in the Ball 14 mils (mil = 1072 in) class favoring Monte Carlo Dropout (Fig. .

Normal [CXSA 0.00% 0.04% 0.00% 0.22% 0.02% 0.00% 0.00% 0.00% 0.00%
Ball7mis  0.00% 98.66% 0.01% 0.00% 0.00% 0.01% 0.00% 0.28% 0.03% 0.32%
08
Ballt4mis  0.04% 0.00% 0.93% 0.31% 0.40% 0.20% 1.50% 0.87% 0.91%
Bal2imis  0.00% 0.00% 1.47% 94.00% 0.35% 1.02% 0.61% 0.63% 2.09% 0.03%
06
B ImerRace7mis  0.37% 0.00% 0.15% 0.04% 98.19% 0.08% 0.05% 0.00% 0.01% 0.01%
]
E Inner Race 14 mils  0.03% 0.02% 1.12% 1.13% 0.76% 93.59% 0.89% 0.26% 3.81% 0.54%
0.4
Inner Race 21 mils  0.00% 0.00% 0.24% 1.14% 0.02% 1.87% 97.50% 0.00% 0.08% 0.20%

Outer Race 7 mils 0.00% 0.26% 1.28% 0.39% 0.04% 0.13% 0.00% 89.09% 3.43% 0.22%
-02
Outer Race 14 mils 0.00% 0.01% 1.34% 2.31% 0.07% 2.09% 0.06% 6.77% 86.86% 1.32%
Outer Race 21 mils 0.00% 1.04% 1.63% 0.06% 0.04% 0.80% 0.69% 1.47% 2.81% 96.45%
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Figure 3. Mean Confusion Matrix for Monte Carlo Dropout Model.

With these differences in accuracy raised, it is of interest to relate them to the levels of uncertainty produced
by the models. In this sense, Figures [5] and [f] shows in confusion matrices format the average uncertainty of the
predictions for each class. In general, the levels of uncertainty in the Monte Carlo Dropout model (Fig. [3)) are
higher with respect to those of the model with Variational Inference (Fig. [6). It is relevant to emphasize that in the
Monte Carlo Dropout model, the highest levels of uncertainty are correlated to the Outer Race 7 class, in which a
lower classification accuracy was observed in relation to the Variational Inference. Nevertheless, in both models
the levels of greater uncertainty were also concentrated in Outer Race classes, demonstrating that the separation
zone of these classes is more complex and shows greater difficulty in classification than the others.

In order to better understand the behavior of the models in the Outer Race 7 mils and 14 mils classification
interface, Figures [7] that shows histograms for a dignostic. Enabling the study of the stochastic behavior of the
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Figure 5. Confusion matrices of the standard deviation values related to the Uncertainty in each class for Monte

Carlo Dropout Model.
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Figure 4. Mean Confusion Matrix for Variational Inference Model.
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Figure 6. Confusion matrices of the standard deviation values related to the Uncertainty in each class for Variational

Inference Model.

models and how they are producing uncertainties. From the appreciation of the results for this Outer Race 14
mils record, it is notable that the Monte Carlo Dropout model (Fig. [7) has produced more sparse predictions
distributions, however, in all predictions the classification was correct. However, in the application of Variational
Inference (Fig. [7b) there is in some samples a misclassification, causing confusion between the Outer Race 7 and

14 mils classes.
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Figure 7. Histograms of a diagnosis of a outer race damage with a diameter of 0.014” for Monte Carlo Dropout
and Variational Inference Model.

Finally, it is of due purpose that the behavior of the model is analyzed by taking into account the uncertainties
in the classification. This aspect is central when the subject is Bayesian models. The graph of Figure[§|shows the
behavior of model accuracy versus increasing uncertainty in the predictions. It is easy to conclude that both models
decreased their accuracy as the average uncertainty in the sample predictions increased. This aspect indicates that
the greater the uncertainty in the prediction, the lower the observed accuracy. The uncertainty of the two models is
well expressed when this phenomenon is observed.

1.000
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Accuracy

0.992

0.990

—— Variational Inference
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0.988

0.00 0.02 0.04 0.06 0.08 0.10
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Figure 8. Graphic of Accuracy versus Mean Uncertainty.

4 Conclusion

To compare the techniques, the article presented the theoretical background and an application with a bench-
mark data set using validation accuracy, test and uncertainty metrics. Trends were observed that may be relevant
in solving new problems, such as the better generalization of the model using the Monte Carlo Dropout technique,
and the higher training speed when using Variational Inference.

In a certain way the Monte Carlo Dropout technique is easier to use considering the aspects of theoretical
understanding and code construction, however, understanding and using uncertainty requires the comprehension
of Bayesian inference concepts that are common to the application of both techniques.
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