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Abstract. Multistable systems have proved to be important in several engineering areas, from nano to 

macrostructures. Important applications can be found in vibration control, deployable and collapsible structures, 

dynamic systems with a periodic pattern and in the development of new materials (metamaterials), among others. 

However, there is a need to investigate the static and dynamic behavior of these eminently non-linear systems. 

The most basic example of multistable structures is the classic Von Mises truss, which presents two 

configurations of stable equilibrium, that is, a bistable behavior. In this work, the multistable behavior of a 

sequence of Von Mises trusses connected through the insertion of a flexible element represented by a linear 

elastic spring is studied. This system has multiple equilibrium configurations, both stable and unstable, which 

significantly influences its non-linear static and dynamic behavior. For analysis, the nonlinear equilibrium and 

motion equations, in their dimensionless forms, are obtained through the criterion of minimum potential energy 

and Hamilton's principle. Their behavior is then investigated through the use of equipotential energy surfaces 

and curves, nonlinear equilibrium paths, phase planes and basins of attraction. The parametric analysis 

investigates the effect of the connection stiffness and the physical and geometric parameters of the trusses on the 

behavior of the system. Through the results, it is possible to observe the importance of geometric nonlinearity 

and connection stiffness in the dynamics and stability of this new class of structures. 
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1  Introduction 

Multistable systems have received increasing attention in recent years and have become an important 

research field in several engineering areas, from nano to macrostructures [1-12]. Traditionally, from a design 

point of view, instability phenomena have been considered as a limiting factor and should be avoided through 

appropriate design specifications, since it leads to loss of load carrying capacity and eventually damage and 

collapse of the structure. However, in recent years a paradigm shift has emerged where elastic instability can be 

used in a favorable way. Most applications have focused on multistable systems capable of assuming different 

equilibrium configurations. Recent applications include vibration control, deployable and collapsible structures, 

dynamic systems with a periodic pattern and in the development of new materials (metamaterials), among others. 

Therefore, there is a need to investigate the static and dynamic behavior of these eminently non-linear systems. 

The classical example of this class of structures is the Von Mises truss, which the well-known bistable 

behavior can be used to build a structure with multiple configurations of stable equilibrium. Castro et al. [13] 

studied the static instability and the nonlinear free vibration of a multistable system formed by a sequence of 

Von Mises trusses connected by rigid bars, in this work, the rigid element is changed by a flexible one (a linear 

elastic spring), seeking to verify the influence of including the flexible element in the structural behavior already 

presented. This nonlinear model can be suitably used in systems that assume many stable configurations 
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throughout their useful life. 

2  Problem formulation 

The structural system investigated in this paper consists of a sequence of two Von Mises trusses linked by a 

flexible element (a linear elastic spring) in such a way that leads to a model with multiple equilibrium 

configurations, as illustrated in Fig. 1, where a represents the height of the upper truss, b the height of the lower 

truss, c half length of the symmetric truss base, K the stiffness of the linear elastic spring, k1 the axial stiffness of 

upper truss, k2 the axial stiffness of lower truss, v1 the displacement of the upper truss central joint, v2 the 

displacement of the lower truss central joint and P the static load applied at the top node. 

 

Figure 1. Model with two von Mises trusses coupled by a linear elastic spring. 

The length of each truss bar before and after the application of the load P are given respectively by: 
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Considering the engineering strain (ε) and a linear, elastic material, the strain energy of each truss bar (Ubi) 

and of the spring element (Us) are given by: 
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Collecting the contribution from trusses bars and the spring, the strain energy (U) and the gravitational 

potential energy of the applied load (V) are given respectively by: 
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So, the total potential energy of the system (Π = U + V) is: 
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The kinetic energy is given by: 
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where the overdot represents the displacement derivative with respect to time t, ρ is material density and A0 the 

undeformed cross section of the bars. 

The following dimensionless parameters are adopted to conduct the parametric analysis: 

 1
2

2

1 2 0 0

0

1 1 1 1 2 2 2

1 1 1

      ,   ,   , ,               an ., , , , , d  
kKc T

a Pc c t T
k A c k

b k k k v a v
k

a
c c

       



= = = = = = == == =  (6) 



C.H.L. de Castro, D. Orlando, P.B. Gonçalves 

CILAMCE-2022 

Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu, Brazil, November 21-25, 2022 

 

Then, the total potential energy and the kinetic energy can be rewritten in a dimensionless form as follows: 
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Now, using the Langrage function ( L T= − ) and the Hamilton’s principle, the two nondimensional 

equations of motion takes the form: 
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where Q̅ = Q/k1 and ξ1 and ξ2 are the damping ratios. 

3  Static analysis 

3.1 Stability analysis 

First, considering the minimum potential energy principle, the static behavior of the structure can be 

analyzed by the nonlinear equilibrium equations: 

 / 0, 1,2.id d i = =  (11) 

Choosing the dimensionless parameters α = 1.0, δ1 = δ2 = 0.14 and κ = 0.005, Fig. 2 presents the nonlinear 

equilibrium path with six limits points (blue dots). The nonlinear path displays four stable and three unstable 

branches separated by the limit points. The solid lines represent stable equilibrium states and dashed lines the 

unstable equilibrium states. While χ1 increases and decreases under loading, exhibiting displacement limit points, 

χ2 always increase. Under increasing load, the truss becomes unstable at λcr = 1.32 × 10-3 where the truss jumps 

to an equilibrium position were both trusses present an inverted equilibrium configuration. The results illustrate 

the complex nonlinear behavior of multistable systems and the energy gain or loss due to snap-through. 

a) 

 

b) 

 

c) 

 

Figure 2. Nonlinear equilibrium path: a) λ × χ1, b) λ × χ2 and c) χ1 × χ2 

3.2 Variation of the potential energy 

Figure 3 shown the total potential energy surfaces of the 2dof model for α = 1.0, δ1 = δ2 = 0.14, 
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κ = 0.005 and increasing static load levels. The multistable characteristic of the structural system is demonstrated 

by the presence of the four potential wells in Fig. 3(a). Three potential wells decrease with load and disappears at 

λcr while the potential well associated with the inverted position increases in depth. Saddles and maxima 

represent the unstable equilibrium configurations while the minima in each well represent the stable equilibria. 

a) 

 

b) 

 

c) 

 

Figure 3. Potential energy variation (surface) with static load level: a) λ = 0.0 b) λ = 4.0 × 10-4 c) λ = 12.0 × 10-4 

To better identify the equilibrium points, Fig. 4 present the equipotential energy curves for the same 

increasing static load levels used in Fig. 3. Red dots represent the maxima, blue, the minima, and black, the 

saddles. For the unloaded system (Fig. 4(a)), four stable equilibrium configurations of the structural system are 

observed: one pre-critical, (0,0), and three post-critical ((0.3,1.7), (1.7,0.3) and (2,2)). There is also the presence 

of the five unstable configurations: one maximum point, (1,1), and four saddles (0.2,1.3), (1.3,0.2), (0.7,1.8) and 

(1.8,0.7). The symmetries with respect to the two diagonals represent the inherent symmetries of the structural 

system. Figures 4(b) and 4(c) show the influence of the static load on the potential energy, decreasing the safe 

region associated with the pre-buckling equilibrium configuration, and, in a first moment, the disappearance of 

the region associated with the stable point (0.3,1.7), Fig. 4(b). Then, just before λcr the well associated with 

(1.7,0.3) also disappears as shown in Fig. 4(c). 

a) 

 

b) 

 

c) 

 

  Figure 4. Variation of the curves of equipotential energy with the static load level: a) λ = 0.0 b) λ = 4.0 × 10-4 

and c) λ = 12.0 × 10-4 

4  Dynamic free vibration analysis 

4.1 Natural frequencies 

The natural frequencies and vibration modes are obtained by solving the associated eigenvalue problem. By 

expanding the nonlinear equations of motion in Taylor series, retaining the linear terms, and considering no 

damping and static load (ξ1 = ξ2 = 0 and P = 0), one obtains: 

      2

1 2 0  where   and .
T

K M X X     − = = = 
 (12) 
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where K is the dimensionless stiffness matrix, M the dimensionless mass matrix and   is the natural frequency 

parameter. 

Table 1 shows the results for some selected values of the dimensionless parameters (see Eq. 6). The lowest 

frequency corresponds to the in-phase vibration mode, while the second mode corresponds to the out-of-phase 

mode with the two trusses moving in opposite directions. The results clarify the influence of small variations in 

geometry (δ1 and δ2) and relative stiffness of the two trusses (α) and spring stiffness (κ) on the natural 

frequencies and second vibration mode. 

Table 1. Natural frequencies and associated modes 

α δ1 δ2 κ First ω Eigenvector Second ω Eigenvector 

1.0 0.10 0.10 0.005 0.1715 [1.0  1.0] 0.2105 [-1.000  1.000] 

1.0 0.14 0.14 0.005 0.2379 [1.0  1.0] 0.2672 [-1.000  1.000] 

1.0 0.10 0.10 0.006 0.1715 [1.0  1.0] 0.2175 [-1.000  1.000] 

1.0 0.10 0.10 0.012 0.1715 [1.0  1.0] 0.2553 [-1.000  1.000] 

1.0 0.10 0.12 0.005 0.1828 [1.0  1.0] 0.2300 [-0.558  2.582] 

1.0 0.12 0.10 0.005 0.1828 [1.0  1.0] 0.2300 [-1.789  0.387] 

0.8 0.10 0.10 0.005 0.1609 [1.0  1.0] 0.2049 [-1.469  0.681] 

1.2 0.10 0.10 0.005 0.1783 [1.0  1.0] 0.2186 [-0.681  1.469] 

Considering that the total displacement (χnT) as to the sum of static (χni) and dynamic (χn(t)) displacements 

 ( ) .nT n nt i  = +  (13) 

it is possible to study the variation of fundamental frequency with the static load. Figure 5 shows the nonlinear 

frequency-load relation for different dimensionless parameters for selected values of δ1 = δ2 and for increasing 

levels of static load, where χni is obtained from the nonlinear equilibrium path (Fig. 2). 

 

Figure 5. Variation of the fundamental frequency of the pre-buckling configuration with the static load level 

along the pre-buckling path for α = 1.0, κ = 0.00 and δ1 = δ2 = 0.08 (green), δ1 = δ2 = 0.10 (blue), δ1 = δ2 = 0.12 

(black) and δ1 = δ2 = 0.14 (red). 

4.2 Free vibration response 

Considering a conservative system, from eq. (7) and (8), the conservation of energy principle leads to: 

 T C+ =  (14) 

where C is a given constant associated with the energy level obtained for a set of initial conditions and a given 

static load level.  

A four-dimensional phase space (χ1, χ1,τ, χ2 and χ2,τ) is obtained by choosing a static equilibrium position. 

Figure 6 presents the four cross-sections of the four-dimensional phase space for different energy levels having 

as a reference the unloaded equilibrium position showing, in agreement with the previous analyses, five centers 

(four attractors and one repellor) and four saddles. The heteroclinic orbits connecting the saddles separate de 

different types of motion, including in-well and cross-well motions. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 6. Isoenergetic curves of the unloaded system (λ = 0.0) for α = 1.0, κ = 0.005 and δ1 = δ2 = 0.14. a) χ1 × χ2, 

b) χ1 × χ1,τ, c) χ2 × χ2,τ and d) χ1,τ × χ2,τ 

But all systems have some dissipative effect and damping must be considered. So, for each set of initial 

conditions, the damped response will converge to one of the four coexisting attractors. Figure 7 shows sections 

the basins of attraction of the damped system in configuration space for increasing static load levels, λ. Saddles 

are represented by the yellow points and the attractors are marked by the white points in each region. Blue region 

denotes the pre-buckling basin of attraction while the black, red and green regions are the basins of attraction of 

the three post-buckling configurations. For λ = 0.0 the blue and green region are symmetrically distributed, the 

same occurring with the black and red ones. As λ increases, most initial conditions are connected to the green 

basin (the post-buckling equilibrium position where the two trusses are in an inverted position), while the blue 

region associated with pre-buckling equilibrium positions decreases considerably, evidencing the loss of 

dynamic integrity. Moreover, the red region is the first to disappear, followed by the black region, then by the 

blue region until only the green region remains for λ> λcr. Also the uncorrupted continuous basin around the 

attractor increases showing a growing robustness of the post-buckling equilibrium position under external 

disturbances. 

a) 

 

b) 

 

c) 

 

Figure 7. Basins of attraction for α = 1.0, κ = 0.005 and δ1 = δ2 = 0.14. a) λ = 0.0 b) λ = 6.4 × 10-4 and  

c) λ = 12.8 × 10-4. The attractor’s coordinates are: a) (0.00, 0.00), (0.31, 1.69), (1.69, 0.31), (2.00, 2.00), b) (0.13, 

0.02), (1.92, 0.44), (2.10, 2.01) and c) (0.40, 0.05), (2.17, 2.02). 
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5  Conclusions 

The present work conducts an analysis of a structural system constituted by two shallow Von Mises trusses 

connected by a flexible element. The connection leads to a complex static multistable behavior. The unloaded 

structure displays nine equilibrium positions, four stable (attractors) and five unstable (four saddles and a 

repellors). Previous work [13] studied a similar model connected by rigid bars. Comparing both models, it is 

observed that the inclusion of a soft flexible element as a link between trusses leads to nonlinear equilibrium 

path with several limit points (load and displacement limit points) separating the stable and unstable equilibrium 

branches but no other bifurcation point. The effect of applied static load is analyzed using equipotential energy 

curves and basins of attraction. The results illustrate how an increasing static compressive load changes the size 

and depth of the four potential wells. They also show through evolution of the potential energy and basins of 

attraction the increasing sensitivity of the pre-buckling equilibrium configuration to external disturbances, 

demonstrating the loss of its dynamic integrity, whit phase-space dominated by the basin of the post-buckling 

equilibrium position where the two trusses are in an inverted position. Future work will include the nonlinear 

dynamic behavior of this model to assess its dynamic safety through bifurcation diagrams, basins of attraction 

and integrity measures [2, 11]. 
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