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Abstract. Knowing the damping level is important for the analysis, experimentation, and use of the systems. Most 

of laminated shells studies are concerned with viscous damping, however in several engineering applications the 

nonlinear damping is introduced by dissipative forces. For this reason, in this study the influence of the nonlinear 

damping term proportional to the power of velocity on the free vibration of laminated circular cylindrical shells is 

considered. To model the shell, the Donnell nonlinear shallow shell theory is used, and from energy approaches 

the set of nonlinear ordinary differential equations of motion is obtained, and then solved by Runge-Kutta method. 

For these analyzes is considered expansions to describe the axial, circumferential and radial displacements 

totalizing fourteen degrees-of-freedom. The obtained results show that nonlinear damping have a great influence 

on the attenuation of free vibration of the laminated circular cylindrical shells. 
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1  Introduction 

Knowing the damping level is important for the analysis, experimentation, and use of the systems. It acts in 

the attenuation of the resonance response in forced systems or in the decay of free vibrations [1, 2, 3], and in 

various systems the energy dissipation mechanism is nonlinear [4]. 

Often, damping is the main responsible for the nonlinear behavior of the system and, therefore, it is interesting 

that the responses are analyzed assuming only this portion as nonlinear [5]. The nonlinearity condition in damping 

may presents a rich variety of behaviors as: coexistence of attractors, coexistence of an attractor and a sea of chaos, 

chaotic responses without equilibrium points, pairs of attractors and repellors [6]. 

Most of laminated shells studies are concerned with viscous damping, however in several engineering 

applications the nonlinear damping is introduced by dissipative forces. For this reason, in this work the influence 

of nonlinear damping term proportional to the power of velocity on the free vibration behavior of laminated circular 

cylindrical shells is investigated. 

To model the shell, the Donnell nonlinear shallow shell theory without considering the effect of shear 

deformation is used, and fourteen degrees-of-freedom is considered to describe the displacement field in axial, 

circumferential and radial directions. The set of coupled nonlinear ordinary differential equations of motion are 

derived from energy approaches and, in turn, solved by Runge-Kutta method. The obtained results show that 

nonlinear damping have a great influence on the free vibration responses of the laminated circular cylindrical 

shells. 
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2  Mathematical formulation 

Consider a simply supported laminated cylindrical shell with length L, radius R and thickness h, made of N 

orthotropic layers. The axial, circumferential and radial global coordinates are denoted by x, y = R and z, 

respectively, and the corresponding displacements of the shell middle surface are denoted by u, v and w, as 

displayed in Fig. 1. Local coordinate system, which determines the principal axes of material orthotropy and may 

not coincides with the global cylindrical coordinates, are represented by 1

k , 2

k  and 
3

k . 

 

 

 

 

(a) (b) (c) 

Figure 1. (a) Shell geometry, (b) Shell lamination and (c) Coordinate system of laminae 

The kth layer is assumed to be made of an elastic orthotropic material with Young’s moduli 1

kE  and 2

kE  in 

the 1

k  and 2

k  directions, respectively, shear modulus 12

kG , Poisson coefficients 12

k  and 21

k , and mass density 
k

s . The stress-strain relation for the kth orthotropic layer of the shell in the local coordinates, obtained under the 

hypothesis 3

k = 13

k = 23

k = 0, is given by 
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where because of symmetry, 21 1 12 2

k k k kE E =  . 

Usually, the lamina material axes ( 1

k  and 2

k ) do not coincide with the shell reference axes (x, ), while 

3

k  is normally coincident with z. Then, the strains and stresses on local axes can be related to the global axes by 

using the expressions 
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and 
k  is the angle between x and 1

k . 
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Therefore, the stress-strain relation in the shell coordinates can be written as 
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k
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where the stiffness matrix Qk is given by 
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It is possible to observe, as a consequence of the discontinuous variation of the stiffness matrix from layer to 

layer, discontinuities in the stresses distribution. 

The middle surface kinematic relations, based on the Donnell shallow-shell theory, are 

 

2

, , , ,2

, , , ,2

, ,

, 2

1 1
, , ,

2 2

, , ,

x x x x x x

x

x xx x

v w u ww
u w v w

R R R RR

w w
w

RR

   

 

 

 

 = +  = − +  = + +

 = −  = −  = −

 (7) 

which are related to the deformations of any point on the shell by 
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The nonlinear equations of motion are obtained by applying Hamilton's principle to non-conservative 

systems. The kinetic energy is considered as 
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and the strain energy is given by 
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For the viscous damping is considered the Rayleigh’s dissipation function 
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where  is the viscous damping coefficient and 0 is the lowest natural frequency of the shell. 

Rayleigh dissipation function (eq. 8) is considered to obtain the linear damping; however, to obtain the 

quadratic and cubic damping, it is necessary to define equivalent dissipation functions, determined respectively as 
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where 2 and 3 are quadratic and cubic damping coefficients. 
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For the displacements field the following modal expansions, in terms of the circumferential and axial 

variables, are adopted 
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where u(t), v(t) e w(t) are the time-dependent non-dimensional modal amplitudes. 

These modal expansions satisfy the out-of-plane boundary conditions and include driven modes, companion 

modes, additional asymmetric modes, and axisymmetric modes. They lead to a fourteen-degrees-of-freedom 

reduced order model and, despite being minimal expansions, offer good accuracy [7]. 

3  Numerical results 

The analysis has been made for a simply-supported, imperfection-free, laminated circular cylindrical shell 

with L = 95.87 mm, R = 67.80 mm and h = 0.678 mm, made of three layers -30°/0°/30° of the same thickness. The 

material properties of the three layers are E1 = 40.2 x 109 Pa, E2 = 16.7 x 109 Pa, G12 = 4.61 x 109 Pa, 12 = 0.363 

and s = 1500 kg/m³ [8]. In the present analysis, the adopted viscous damping factor is  = 0.01, and the quadratic 

and cubic damping coefficients are considered as portions of linear damping coefficient (eq. 12). 

The relations between quadratic or cubic and linear damping coefficients assume eight different values: 0; 

1/10; 1; 10; 100; 1,000; 10,000; and 100,000. These values were chosen after carrying out an analysis of the 

individual influence of each damping coefficient on the free vibration behavior of the shell, displayed in Fig. 2. 

 

 
(a) 

 
(b) 

Figure 2. Free vibration response with 1 = 0. (a) 3 = 0 and (b) 2 = 0. 2/1 or 3/1 =  1/100  1/10 

 1  10  100  1,000  10,000  100,000. 

Figure 2 shows free vibration responses of the laminated cylindrical shell for different levels of quadratic and 

cubic damping coefficients. Fig. 2(a) displays the shell behavior with quadratic damping, and it is possible to 
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observe an effective change since 2/1 = 100. The responses with cubic damping are showed in Fig. 2(b), in which 

the change is noticeable in a bigger relation, 3/1 = 10,000. 

Considering these relations for quadratic and cubic damping coefficients, and assuming  equal to 0.01 or 

zero, were obtained the time responses for the laminated shell, totalizing 128 combinations, of which just some 

will be presented here. 

To understand the influence of quadratic damping (considering linear and cubic damping as well), Fig. 3 

shows the free vibration behavior for some cases. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Free vibration response with  = 0.01. (a) 3/1 = 1/10, (b) 3/1 = 10, (c) 3/1 = 1,000 and (d) 3/1 = 

100,000. 2/1 =  0  1/10  1  10  100  1,000  10,000  100,000. 

It can be observed that for small relations the behavior doesn’t change, this means that the linear damping is 

governing the response (as well is seen in the next analysis). From 2/1 = 100 forward it changes, and the quadratic 

damping has a strong influence, except for the biggest 2/1 where the difference is noticeable for 2/1 = 1,000. 

When  is adopted equal to zero, a similar behavior is observed. 

In the same way, Fig. 4 displays the free vibration responses with the purpose of understanding the influence 

of cubic damping coefficients, acting together linear and quadratic damping. 

In the first two cases presented (Fig. 3(a) and Fig. 3(b)) the behavior of the shell changes in 3/1 = 10,000. 

Then, it is possible to say that the cubic damping has a small influence for shorter relations, and for bigger values 

of 2/1 (Fig. 3(c) and Fig. 3(d)) the response is practically the same, independently from 3/1 relation. Similar 

responses are obtained when  is taken null. 

Maximum amplitudes of the radial displacement modes were determined from the 128 combinations and 

then a global sensitivity analysis was performed. It was applied two regression-based methods: Standardized 

Regression Coefficients (SRC) and Partial Rank Correlation Coefficients (PRCC). The obtained results are shown 

in Tab. 1 and Tab. 2, respectively. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Free vibration response with  = 0.01. (a) 2/1 = 1/10, (b) 2/1 = 10, (c) 2/1 = 1,000 and (d) 2/1 = 

100,000. 3/1 =  0  1/10  1  10  100  1,000  10,000  100,000. 

The SRC technique quantifies the effect of each input variable on the response variables. In other words, for 

this study, it evaluates the influence of quadratic and cubic damping coefficients on the maximum amplitudes of 

the radial displacement modes, considering  equal to 0.01 or zero. 

Table 1. Standardized Regression Coefficients (SRC) for radial displacement modes 

  = 0.01  = 0 

Maximum 

amplitudes 
2 3 ∑2 2 3 ∑2 

w1,1 -0.88927615 -0.08244842 0.80 -0.88706239 -0.08543799 0.79 

w1,1c -0.88929535 -0.08314534 0.80 -0.88750118 -0.08534864 0.79 

w0,1 -0.9403553 -0.1013922 0.89 -0.9355833 -0.1026132 0.89 

w0,3 -0.97583013 -0.03534228 0.95 -0.97532443 -0.03699886 0.95 

 

From Tab. 1 it is possible to confirm the strong influence of the quadratic term in the free vibration of the 

laminated cylindrical shell, far superior to the influence of cubic damping. For driven mode, for example, the 

influence of quadratic damping is about 89%, while for cubic coefficient is a little more than 8%. 

It should be noted that SRC technique is suitable only for linear models; more the sum of the squared 

coefficients is close to the unity, more the linearity and adjustment of the model is verified [9]. Again, taking as 

an example the driven mode, the sum is equal to 0.80, which indicates a good approximation. 

For nonlinear (but monotonic) models, the PRCC technique is more adequate [9]; it allows verify 

qualitatively the order of importance of the response variables. The results are shown in Tab. 2 and corroborate 

that the quadratic damping has the biggest effect on the free vibration behavior of the laminated shell. 
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Table 2. Partial Rank Correlation Coefficients (PRCC) for radial displacement modes 

  = 0.01  = 0 

Maximum 

amplitudes 
2 3 2 3 

w1,1 -0.9530758 -0.7447277 -0.9514657 -0.7456202 

w1,1c -0.9530758 -0.7447277 -0.9514657 -0.7456202 

w0,1 -0.9343142 -0.7348700 -0.9532148 -0.7443547 

w0,3 -0.9199303 -0.7429571 -0.9250480 -0.7371472 

4  Conclusions 

The influence of quadratic and cubic damping coefficients on the free vibration of laminated simply-

supported cylindrical shell is studied. To model the shell, the Donnell nonlinear shallow shell theory without 

considering the effect of shear deformation is used and a model with fourteen degrees of freedom describes the 

displacement field of the shell in axial, circumferential and radial directions. 

Rayleigh dissipation function is adopted to describe linear damping, and equivalent expressions are written 

to represent quadratic and cubic damping coefficients as well. Eight different relations between quadratic and 

linear damping, even as cubic and linear damping, were selected for  = 0.01 and  = 0, resulting in 128 

combinations. The analysis of time responses for these cases shows the influence of nonlinear damping on free 

vibration behavior of the laminated shell, which is stronger for the biggest relations between nonlinear and linear 

damping coefficients. 

Also, it is possible to observe that quadratic damping has a bigger influence than cubic one; what is confirmed 

by the application of Standardized Regression Coefficients (SRC) and Partial Rank Correlation Coefficients 

(PRCC) techniques. 
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