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Abstract. The sudden loss of a single supporting element in a RC frame may lead to the disproportionate partial 

or total structural collapse if its design fails to confine the initial damage through resisting mechanisms, like 

compressive arch action, Vierendeel action, and catenary action. Since uncertainties related to material properties 

and geometrical parameters plays a major role in the behavior of these resisting mechanisms, and consequences 

are highly significant for such failure events, the risk optimization is a very convenient approach to optimize the 

balance between economy and safety. This is shown herein by the optimization of a RC frame, considering the 

cross sections and the steel rebar areas of the beam and columns as design variables. Failure consequences are 

considered for serviceability, beam bending, shear failure, flexo-axial compression of the columns, and steel 

rupture at and before catenary action. A physical and geometrical nonlinear static analysis is employed, in which 

the sample points are submitted to pushdown analysis. Material behavior is represented by an elastoplastic model 

with isotropic hardening for the steel rebars, and by combination of Mazars μ model with the modified Park-Kent 

model for the confined concrete. Failure probabilities are evaluated by the Weighted Average Simulation Method, 

and the Risk optimization is done by the Firefly Algorithm. In order to reduce the computational cost due to the 

nonlinearities involved and the high number of sample points required, Kriging is used to generate a sufficiently 

accurate metamodel for the limit states and reliability indexes. It is shown that the adopted formulation leads to 

more allocation of material when a column loss scenario starts to be significant in terms of safety x economy. 
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1  Introduction 

Progressive collapse happens when an initial member failure triggers the failure of the adjacent elements, in 

resemblance to a cascade effect, leading to a final failure with a disproportionate higher severity in relation to the 

initial event. When under multiple hazards, the probability of structural collapse 𝑃[𝐶] is given as: 

 𝑃[𝐶] = ∑ ∑ 𝑃[𝐶|𝐿𝐷, 𝐻]
𝐿𝐷

𝑃[𝐿𝐷|𝐻] 𝑃[𝐻]
𝐻

 (1) 

where 𝑃[𝐻] is the probability of hazard occurrence; 𝑃[𝐿𝐷|𝐻] is the conditional probability of local damage for a 

given hazard 𝐻; and 𝑃[𝐶|𝐿𝐷, 𝐻] is the conditional probability of collapse for a given 𝐿𝐷 and 𝐻.  

Beck et al. [1, 2] uses this formulation considering 𝑃[𝐿𝐷|𝐻] 𝑃[𝐻] as the probability of local damage 𝑃𝐿𝐷, 

combining column loss and intact structure scenarios in a single objective function in order to study  the cost-

benefit of considering column loss situations for usual civil engineering structures. Aiming to expand this study to 

usual reinforced concrete (RC) structures while considering the realistic nonlinear structural behavior, this 

manuscript uses this approach to study the cost-benefit of considering a column removal to design a RC frame. 



Template file for CILAMCE-2022 full-length paper (double-click here to enter the short title of your paper) 

CILAMCE-2022 
Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu, Brazil, November 21-25, 2022 

2  Formulation and implementation 

The RC frame considered herein is shown in Figure 1. Its beams have a span of 4.00 m, cross section width 

of 20 cm, concrete cover of 2.5 cm, and stirrups with a diameter of 6 mm, while each column span is 3.00 m long 

and have cross section width of 20 cm, concrete cover of 2.5 cm, and stirrups with diameter of 6 mm spaced by 

10 cm. Every member has a concrete strength of 𝑓𝑐
′ = 45 MPa with modulus of elasticity 𝐸𝑐 = 35.5 GPa and tensile 

strength 𝑓𝑐𝑡𝑚 3.33 MPa (𝐸𝑐 and 𝑓𝑐𝑡𝑚 inferred via Model Code [3]). Similarly, each member has longitudinal rebars 

with yielding strength of 511 MPa and modulus of elasticity 𝐸𝑆 = 212 GPa. Both dead load and live load are 7.0 

kN/m², and an additional 2.0 kN/m due to non-structural components over the beams is considered. Since the floors 

are one-directional, this leads to a nominal dead load 𝐷𝑛 and live load 𝐿𝑛 of 16 kN/m and 14 kN/m, respectively. 

The design parameters to be optimized are the mean values of: the beams cross section height, top and bottom 

beam rebar areas, stirrups spacing in the beams, longitudinal rebar area at the columns, and column cross section 

height. Hence, every design variable is a random variable. No discontinuities are considered along the elements, 

and the same optimal design for beam and column is attributed to every beam and column, respectively. 

 

 
 

Figure 1. Studied frame 

2.1 Risk optimization 

The risk optimization problem follows the formulation proposed by Beck et al. [1, 2] with a total expected 

cost 𝐶𝑇𝐸 adapted to the RC frame studied herein: 

 𝐶𝑇𝐸 = 𝐶𝑀 + 𝐶𝑒𝑓,𝑆
𝐼 + 𝐶𝑒𝑓,𝐵

𝐼 + 𝐶𝑒𝑓,𝑉
𝐼 + 𝐶𝑒𝑓,𝐹𝐴

𝐼 + 𝐶𝑒𝑓,𝐶𝐴
𝐶𝐿 + 𝐶𝑒𝑓,𝑆𝑛𝑎𝑝

𝐶𝐿 + 𝐶𝑒𝑓,𝑉
𝐶𝐿 + 𝐶𝑒𝑓,𝐹𝐴

𝐶𝐿  (2) 

where 𝐶𝑀 is the manufacture cost; the superscripts 𝐼 and 𝐶𝐿 stands for intact and column loss scenarios, 

respectively; 𝐶𝑒𝑓,𝑆
𝐼  is the expected cost of serviceability failure; 𝐶𝑒𝑓,𝐵

𝐼  is the expected cost of beam bending failure; 

𝐶𝑒𝑓,𝐶𝐴
𝐶𝐿  is the expected cost of rebar rupture at catenary action; 𝐶𝑒𝑓,𝑆𝑛𝑎𝑝

𝐶𝐿  is the expected cost of rebar rupture before 

catenary action (non-ductile); 𝐶𝑒𝑓,𝑉
𝐼  and 𝐶𝑒𝑓,𝑉

𝐶𝐿  are the expected costs of shear failure at the beams for the intact and 

column loss scenarios, respectively; and 𝐶𝑒𝑓,𝐹𝐴
𝐼  and 𝐶𝑒𝑓,𝐹𝐴

𝐶𝐿  are the expected costs of flexo-axial compression failure 

at the columns for the intact and column loss scenarios, respectively. 

The SINAPI database is adopted to estimate 𝐶𝑀 in R$, where unencumbered prices for Rio de Janeiro 

regarding the period of  June 2021 are considered. Hence, 𝐶𝑀 is composed by cost of formwork, obtainment of 

concrete, pouring of concrete, obtainment of steel rebars, and placing of steel rebars. For a given failure mode, the 

expected cost of failure 𝐶𝑒𝑓 is given by the product of a cost multiplier 𝑘 times 𝐶𝑀 times the probability 𝑃𝑓 that 

the considered failure mode occurs. Thus, for 𝐶𝐿 the probability of local damage 𝑃𝐿𝐷 also multiplies 𝑘 × 𝐶𝑀 × 𝑃𝑓 . 

The multipliers 𝑘 are chosen according to the order of severity of each failure mode and regarding the real life 

ratio between the cost of the building and the  cost of reconstruction after failure [1, 2]. Therefore, 𝑘 is assumed 

equal to 5 for serviceability failure, 20 for beam bending failure, 30 for steel rupture at catenary action, and 60 for 

each fragile and severe failure mode: shear, flexo-axial compression, and steel rupture before catenary action. 

Column lost Column lost 
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2.2 Reliability analysis 

The Weighted Average Simulation Method (WASM), proposed by Rashki et al. [4], is used herein to estimate 

the failure probabilities 𝑃𝑓 required to compute the 𝐶𝑇𝐸. This technique is appropriate for optimization problems 

involving  random design variables since the estimation of 𝑃𝑓 depends only on the index function 𝐼(𝒙) and the 

weight index 𝑊(𝒙) of the 𝑛𝑠𝑝 sample points, with 𝒙 being the random variable vector. Therefore, changing the 

mean value of the candidate for optimal design only requires the re-evaluation of the weight index 𝑊(𝒙). 

 𝑃𝑓 =
∑ 𝐼(𝒙𝑘) 𝑊(𝒙𝑘)

𝑛𝑠𝑝

𝑘=1

∑ 𝑊(𝒙𝑘)
𝑛𝑠𝑝

𝑘=1

 (3) 

The uncertainties adopted in this work are addressed in Table 1. A total of 7 million sample points are used 

to estimate every 𝑃𝑓 for 2000 optimal candidates, which are generated via Latin Hypercube Sampling over the 

design domain. These optimal candidates are used to elaborate a metamodel for every �̂� = −Φ−1(�̂�𝑓), reducing 

even further the computational cost to compose 𝐶𝑇𝐸. 

Table 1. Uncertainties considered 

Variable Distribution Mean (𝜇) 
Standard 

deviation (𝜎)  

Coefficient of 

variation (𝛿) 
Reference 

Beams cross section 

height (ℎ𝑉) 
Normal 

To be 

optimized* 
1 mm - [5] 

Bottom rebar area 

(𝐴𝑠𝑖) 
Normal 

To be 

optimized* 
- 0.05 [5, 6] 

Top rebar area 

(𝐴𝑠𝑠) 
Normal 

To be 

optimized* 
- 0.05 [5, 6] 

Spacing between 

the beam’s stirrups 

(𝑠𝑡) 

Normal 
To be 

optimized* 
- 0.05 Assumed 

Rebar area of the 

columns (𝐴𝑠𝑝) 
Normal 

To be 

optimized* 
- 0.05 [5, 6] 

Columns cross 

section height (ℎ𝑉) 
Normal 

To be 

optimized* 
1 mm - [5] 

Concrete resistance 

(𝑓𝑐
′) 

Lognormal 45 MPa - 0.12 [7, 8] 

Yielding strength 

(𝑓𝑦) 
Normal 511 MPa - 0.05 [6, 8] 

Concrete’s self-

weight (𝛾𝑐) 
Normal 25 kN/m³ - 0.05 Assumed 

Ultimate steel strain 

(휀𝑠𝑢) 
Normal 0.13 - 0.14 [9] 

Dead load (𝐷) Normal 1.05 𝐷𝑛 - 0.10 [10] 

50-year live load 

(𝐿50) 
Gumbel 1.00 𝐿𝑛 - 0.25 [10] 

Arbitrary point in 

time live load 

(𝐿𝑎𝑝𝑡) 
Gamma 0.25 𝐿𝑛 - 0.55 [10] 

Model error (𝐸𝑀) Lognormal 1.107 - 0.229 Obtained 

2.3 Structural analysis 

In order to estimate the probabilities of failure, a metamodel via kriging is employed [11], which requires the 

evaluation of a sufficient number of support points by an accurate model of structural analysis. The finite element 

method based on positions proposed by Coda [12] is used herein, where layered 2D beam elements are adopted. 

Each beam is discretized into 15 finite elements with a fifth-degree of approximation, and each column into 3 

finite elements with the same degree. A total of 15 layers with 1 integration point each is used to discretize the 
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cross-sections, being 13 layers for the concrete core and one for each steel reinforcement. An uniaxial model with 

isotropic hardening is used to represent the elastoplastic behavior of the longitudinal rebars, while 𝜇-Model [13] 

is used to represent the damage evolution and the unilateral behavior of the concrete. Stirrups cannot be explicitly 

considered, but its influence on the ductility of the confined concrete is regarded by considering the resulting 

uniaxial curve from the Modified Park-Kent Model [14] to calibrate the parameters of the 𝜇-Model.  

Two structural analysis are carried out for every sample point: one for the intact structure (𝐼), where an 

increasing uniform load is applied over each beam, and one for the column loss scenario (𝐶𝐿), where the uniform 

load is increased only over the beams directly affect by the column removal. The first scenario aims to obtain the 

uniform load 𝑞𝛿
𝐼  that leads to a maximum mid-span displacement of L/600; the uniform load 𝑞𝑀

𝐼  that leads to the 

maximum beam bending moment allowed; the greatest observed shear force 𝑉𝐵
𝐼  until 𝑞𝑀

𝐼  at the beams; and the 

maximum acting axial force 𝑁𝐶
𝐼  and bending moment 𝑀𝐶

𝐼  until 𝑞𝑀
𝐼  at the columns. For the column loss scenario it 

is obtained the uniform load 𝑞𝐶𝐴 that leads to the first longitudinal rebar rupture; the greatest uniform load 𝑞𝐶𝐴𝐴 

observed during the compressed arch action (CAA) action stage; the greatest observed shear force 𝑉𝐵
𝐶𝐿 at the beams 

until 𝑞𝐶𝐴; and the maximum axial force 𝑁𝐶
𝐶𝐿 and bending moment 𝑀𝐶

𝐶𝐿 at the columns for 𝑞𝐶𝐴. Due to the symmetry 

in the structural geometry and loading conditions, only half of the structure is modelled for both scenarios. 

2.4 Kriging 

Kriging is used to estimate a simplified, yet accurate, model of the limit states and the system reliability 

indexes in order to allow the realization of the risk optimization, otherwise it would be unviable due to a high 

computational cost.  The choice of this metamodeling technique is due to its high efficiency and robustness for 

structural reliability problems, besides the fact of having great performance for multi-dimensional analysis [11]. 

A sufficient number of support points 𝑛𝑆 is required in order to make the estimated model accurate relative 

to the original model. The base of functions chosen to generate the simplified model is a cubic polynomial with 

all the possible crossed terms. Also, the hyperparameters 𝜽 are considered non-isotropic, being calibrated by the 

minimization of the function proposed by Dubourg [15] (eq. (4)) via Firefly Algorithm [16]. 

 𝜽 = arg min
𝜽 ∈ 𝑛𝜃

ℒ(𝜽) = 𝜎2(𝜽) |𝑅(𝜽)|1/𝑛𝑠 (4) 

where 𝑛𝜃 is the number of hyperparameters coordinates to be evaluated, 𝜎2(𝜽) is the metamodel variance, and 

𝑅(𝜽) is the matrix containing the correlation between pairs of support points. 

3  Results 

The following results were obtained considering 2000 support points for metamodeling the structural 

response (thus the limit states), which allowed the obtainment of 7 million sample points via kriging to guarantee 

the estimative of additional 2000 support points for metamodeling the reliability indexes of each failure mode 

considered. Firefly algorithm [16] was used for the risk optimization (20 fireflies, 50 iterations + auxiliary 

extensive search), calibration of hyperparameters (10 fireflies, 20 iterations + auxiliary extensive search), and 

calibration of the physical non-linear parameters of 𝜇 Model (50 fireflies and 100 iterations).  

Figure 2 shows the optimal design for every value of  𝑃𝐿𝐷 ranging from 𝑃𝐿𝐷
𝑚𝑖𝑛  = 5E-6 [1, 2] until 𝑃𝐿𝐷 = 1.0. 

From 𝑃𝐿𝐷
𝑚𝑖𝑛 to 𝑃𝐿𝐷 = 1E-2 the optimal design remains practically constant, with beam cross section height of ~35 

cm, bottom rebar area of ~2ϕ13, top rebar area of ~2ϕ12, spacing between the beam’s stirrups of ~26 cm, 

longitudinal rebar area at the columns of ~4ϕ12, and column cross section height of ~25 cm. As shown in Figure 

2, these optimal values ensure optimal reliability indexes of 3.20, 3.60, 4.10 and 5.20 for serviceability, beam 

bending, shear, and flexo-axial compression failure, respectively. These optimal reliability indexes reflects the 

chosen values of 𝑘, which guided the optimization process in order to guarantee higher safety margins against the 

most severe failure modes for the intact structure. 

However, as 𝑃𝐿𝐷 > 1E-2, the optimal design changes drastically, leading to beam cross section height of 40 

cm, bottom rebar area of ~3ϕ17, top rebar area of ~2ϕ16, spacing between the beam’s stirrups of 10 cm, 

longitudinal rebar area at the columns of ~4ϕ13, and column cross section height of ~27 cm. This sudden change 

happens because of the greater expected costs of rebar rupture at catenary action due to the increasing 𝑃𝐿𝐷 (Figure 

4), making necessary to ensure a higher safety margin against this failure mode as well in order to minimize 𝐶𝑇𝐸. 
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It should be noticed that guaranteeing safety against this failure mode reduces the safety margins of the other 

failure modes of the column loss scenarios, mainly the shear failure. However, this optimal configuration allowed 

to reduce the expected cost of rebar failure at catenary action, which was growing much faster than the other failure 

modes with an increasing 𝑃𝐿𝐷. 

 

 

 
 

 
 

 

Figure 2. Optimal values for each design variable according to 𝑃𝐿𝐷 

Following Beck et al. [1, 2], 𝑃𝐿𝐷 = 1E-2 represents the threshold local damage probability 𝑃𝐿𝐷
𝑡ℎ, since after 

this value the cost-benefit of considering a column loss scenario in the design is positive. Keeping the previous 

optimal design for 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ would lead to a much larger total expected cost, even though the manufactural cost 

was smaller. Hence, this procedure leads to more allocation of material in order to reduce the expected costs of 

failure due to the column loss scenario, guaranteeing the best balance between safety x economy. Thus, the new 
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optimal design after 𝑃𝐿𝐷
𝑡ℎ leads to optimal reliability indexes even higher for the failures modes of the intact 

structure, showing that the design for column loss scenario also provides more safety against a normal load 

condition. 

 

 

 

Figure 3. Optimal reliability indexes x 𝑃𝐿𝐷 

 

Figure 4. Expected costs of failure x 𝑃𝐿𝐷 

4  Conclusions 

This manuscript shows how the behavior of the optimal design for the considered RC frame suddenly changes 

after the consideration of a column loss scenario starts to have a positive cost-benefit. The optimal beam height, 

top rebar area, bottom rebar area, column rebar area and column cross section height increases after 𝑃𝐿𝐷
𝑡ℎ in order 

to ensure safety against the failure modes of the column loss scenario, mainly steel rupture at catenary action. The 

increase of the cross sections means an increased resistance against shear failure for the beams and flexo-axial 

compression failure for the columns, while the increase of the rebar areas of the beams allows safety against the 

beam bending failure and the premature rebar rupture (before catenary action). The spacing between the beam’s 

stirrups is the only variable that decreases, which happens in order to guarantee ductility for the concrete after the 

compressive arch action and safety against shear failure for 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ. Thus, the new optimal design after 𝑃𝐿𝐷

𝑡ℎ 

leads to higher safety margins for the failures modes of the intact structure, showing that designing for a single 

column loss scenario also provides more safety for a normal load condition. In view of this, the adopted 
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formulation leads to more allocation of material when a column loss scenario starts to be significant in terms of 

safety x economy, leading to optimal designs that are robust, realistic and behaving close to the expected.  
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