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Abstract. This work presents a boundary element method (BEM) formulation for cohesive crack propagation 

analysis in a 3D approach. BEM is a well-known and remarkable approach in fracture mechanics, providing 

effective stress concentration modelling in addition to less complex remeshing procedures during crack growth. 

The fracture effects are captured by using an alternative BEM formulation based on introducing a set of self-

equilibrated forces, called a dipole, which describes the cohesive zone. This BEM formulation demonstrates some 

advantages in comparison to the classical DBEM approach. The DBEM solves the fracture problem with the 

discretization of both crack surfaces, which leads to six integral equations (three displacements and three tractions) 

per a couple of points at the crack surface. Alternatively, the dipole approach requires the discretisation of solely 

one crack surface. Besides, the nonlinear solution scheme corrects the stress components solely at the FPZ, which 

in the present case are three. Thus, the dipole approach requires solely three integral equations at the FPZ, which 

is half compared to the DBEM. It leads to faster and more effective performance in terms of computational effort. 

Some classic examples from the literature are presented in order to validate the 3D Dipole BEM formulation in 

the light of cohesive crack propagation analysis. Finally, this proposal contributes toward advancing BEM in 

engineering analyses, especially in nonlinear fracture mechanics. 
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1  Introduction 

Realistic and accurate analysis of structural integrity is of utmost importance in engineering. In this context, 

engineering research becomes essential, and it is interested in developing adequate theories for the prediction of 

the mechanical behaviour of structures, identifying possible failure and collapse scenarios. The proper description 

of mechanical fields allows the prediction of material failures, and is of great importance in structural engineering, 

since its success can save lives, monetary and natural resources. In this way, fracture mechanics arises as an 

efficient and robust tool for realistic representation of discontinuities, considering that the appearance and the 

growth of cracks explain the collapse of the material.   

In this context, the finite element method has been applied several times in fracture mechanics [1], including 

its extended version [2]. Alternatively, the boundary element method (BEM) stands out as a powerful technique, 

especially in cases with stress concentration and extended domains. Therefore, the BEM is an interesting numerical 

technique to fracture problems, taking account that the remeshing aspects its simplified. One of the most used 

BEM formulations for fracture mechanics is the dual boundary element method (DBEM), which requires singular 

and hypersingular integral equations along the crack path, avoiding the division of the solid in subregions. Some 

remarkable works using the DBEM approach can be mentioned: Xiao et al. [3] and Andrade and Leonel [4]. Other 

classical formulations using boundary elements have been proposed in the literature for nonlinear fracture 

mechanics. Among these formulations, it is important to mention the Galerkin BEM [5] and multizone BEM [6]. 

The extension to 3D approach for crack propagation analysis with BEM formulations has been a topic of 

great interest in the numerical community. In this regard, it is worth mention some important works: Mi and 

Aliabadi [7] presented a numerical implementation of the 3D DBEM for elastic fracture mechanics. Xiao and Yue 

[8] developed a three-dimensional displacement discontinuity method for cracked bodies in layered rocks. Rocha 

and Leonel [9] presented a BEM formulation of the 3D modelling of concrete structures with the subregion 
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technique and a predefined crack path. Furthermore, the use of 3D BEM formulations for cohesive crack 

propagation problems still unexplored in the literature. 

An alternative formulation for cohesive crack propagations problems its based in the introduction of an initial 

stress field to represent the fracture process zone (FPZ), the so-called Dipole BEM approach. This formulation is 

particularly interesting once requires the discretisation of solely one crack surface and three integral equations 

(related to stress correction) to the representation of the FPZ. In contrast, the dual BEM formulation requires de 

discretisation of both crack surfaces, which leads to six integral equations (three displacements and three tractions). 

Moreover, the Dipole BEM formulation leads to a lower computation effort than the classical DBEM formulation. 

Therefore, Oliveira and Leonel [10] presented a 2D dipole formulation in quase-brittle materials and Almeida et 

al. [11] expanded to multi-crack propagation analysis. 

In this work, the Dipole BEM formulation is extended to the 3D approach considering cohesive crack 

propagation problems. The Hillerborg [12] model in employed, and the three cohesive laws: Linear, Bilinear and 

Exponential are used. Further, the hypersingular kernels present in this formulation are regularized with the 

Guiggiani technique [13] and two examples are presented in order to show the robustness of the 3D Dipole BEM 

formulation. 

2  Dipole BEM formulation 

In this section, the alternative BEM formulation for cohesive crack propagation analysis in 3D structures is 

presented. In this formulation, the nonlinear effects are modelled by imposing an initial stress field, and the 

influence of the FPZ region in displacement and stress components is computed with the introduction of the 

dipoles. Further, the domain integral is degenerated along the crack line, which leads to appearance to the variables 

called dipoles, responsible for correcting the elastic behaviour. For more details of this formulation, see Oliveira 

and Leonel [10] and Almeida et al. [11]. 

For sake of completeness, the formulation initially handles the FPZ as a narrow domain positioned in front 

of the crack tip. This narrow zone has boundary 
C , which may be splitted into 

1

C and
2

C . Thus, 
1 2

C C C = 

. Moreover, the thickness of this region is 2a , which has been assumed as small in comparison with its length. It 

is worth mentioning that the dipoles appear in the limit of 2 0a → , as presented below, Fig. 1. 

It is possible to develop the integral representation for displacements by inserting an initial stress field 0
jk  

[14], neglecting the body forces, 

0

* * 0 *
0

i i
lk k lk k lk k jk ljkc u p u d u p d d  (1) 

where *
lku , *

lkp  and *
lkj indicate the fundamental solutions for displacements, tractions and strains, respectively 

[14]. 0  represents the FPZ as illustrated in Fig. 1.  

 

The last term of eq (1) can be rewritten knowing that 0 0
j jk kp represents the tractions at the narrow region 

boundary associated to the FPZ. It is worth emphasizing that the integral terms on eq. (1) have been defined into 

the local coordinate system, x . Nevertheless, the solution of general cohesive crack growth problems requires 

the evaluation of such terms into the global coordinate system, X . 
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0

* *
0

0 * 0
0 2 2

C C

lj ljC C
jjk ljk j

u u
d a p d a p d

x X
 (2) 

After successive algebraic manipulations and knowing that 
0

2 jjq ap , the last term of eq. (2) can be 

expressed as: 

0

*
0

0 *
0 2

C C

lj C C
jjk ljk lj j

u
d a p d G q d

X
 (3) 

where 

*

, , , , , ,2

1
3 4 3

16 1

lj
lj lj j l l j l j

u
G r r r r r r

X r
 (4) 

in which indicates the shear modulus, represents the Poisson ratio, is the Kronecker delta and ,ir are the 

distance derivatives between source and field points. 

Therefore, eq. (1) can be rewritten in the following form after the manipulations on the domain term 

previously presented:  

* *

C

i i C
lk k lk k lk k lj jc u p u d u p d G q d  (5) 

The last equation enables the solution of the boundary value problem accounting for the nonlinear effects at 

the FPZ. The integral representation for the stress field at internal points, eq. (6), is obtained through the integral 

displacement representation, eq.(5), and the Hooke’s generalized law, 

C

m C m
lm lmj j lmj j lj j lj jS u d D p d G q d g p  (6) 

in which: 

, , , , , ,3

, , , , , , , , , ,

1 2
1

3 1 2
8 1

3 15

mj l lj m ml j
m
lj mj l lj m lm j

j l m m j l l m j l j m

G r r r r r r
r

r r r r r r r r r r

 (7) 

and 

0

0
m
lj

im

if out of cohesive zone
g

if on the cohesive zone
 (8) 

The crack opening displacement (COD) can be obtained taking account the displacement difference between 

points symmetrically positioned at 1 ( )C S and 2 ( )C S , as illustrated in Fig. 1. 

3
11
3

2 2
3

3 3

1 0 0

10 0

1 2
0 0

2 1

qw

w w q

w q

 (9) 

2.1 Algebraic representation 

Taking account, the integral representation of displacement and stress field, eqs. (5) and (6), it is important 

to rewrite these equations in an algebraic form, in order to achieve the nonlinear solution. Therefore, it is 
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convenient to express the problem in a compact form, and eq. (10) can be solved making the necessary changes in 

matrices H  and G . 

HU GP KQ  (10) 

Vector Q  contains the approximate dipoles. After the correct rearrangement of the influence matrices H  

and G (free values in X  and prescribed values in F ), and knowing  that K contains the FPZ representation, the 

matrix A   is obtained, allowing the solution of the algebraic system, as follows, 

X M RQ  (11) 

where, 

1

1

M A F

R A K
 (12) 

As in eq. (10), the stress field, eq. (13), are obtained as following, 

' ' 'H U G P K Q  (13) 

Matrix 'K  contains the vector of dipoles Q , 'H  and 'G are the well-known BEM influence matrices. The 

stress representation is defined as follows, 

N SQ  (14) 

 

in which, 

' '

' '

N F A M

S K A R
 (15) 

Regarding the crack propagation, Rankine’s criterion is applied to the crack growth stability analysis.  Through 

this rupture criterion, the stress state at the crack tip is compared to the material limit stress [11]. Internal points 

are placed near the crack tip in a circumferential arrangement, and the choice of internal points is made based on 

the desired accuracy. Regarding the crack propagation direction, the theory of maximum circumferential stress is 

used, and the crack is considered to propagate perpendicularly to the maximum circumferential tensile stress, as 

stated in Almeida et al. [11].  

It is important to mention that the strong singularity present in the kernels of eq.(14) require a special 

regularization technique for integrating the hyper singular crack element. The regularization technique utilised in 

this work was presented in Guiggiani [13]. Furthermore, the crack elements are always discretised with 

discontinuous linear quadrilateral elements, taking account the hyper singularity present in this formulation. 

3  Applications 

In this section, two examples were chosen to illustrate the accuracy and robustness of the proposed 3D 

formulation. In both examples, the three cohesive laws were employed: Linear, Exponential and Bilinear. The 

nonlinear system solution is solved with a tolerance of 210  , as a function of non-equilibrated stress values. 

Experimental and numerical results are provided from the literature. 

3.1 Example 1: Three-point bending test 

In this example, a concrete specimen subjected to a three-point bending test is presented. The analytical [15] 

and numerical results [16], with the standard finite element method, are available in the literature. The boundary 

mesh consists of about 3441 collocation points and 2900 quadrilateral linear boundary elements, Fig. 2(b). The 

dimensions and materials properties are presented in Fig. 2(a). 
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(a) (b) 

Figure 2. Three-point bending specimen (a) Boundary mesh discretisation (b) 

 In Figure 3, the crack propagation analysis is presented for two diferent steps. Further, it is observed that 

the specimen is close to collapse, however, there is no separation of the structure into two parts. 

  

(a) (b) 

 

Figure 3. Crack path in colour scale (m): (a) Initial; (b) Final 

 In Figure 4, the relative load, /P tP t h f , versus relative mid deflection (given by the quotient 

of the mid deflection, f , and the beam height, h ) curve is presented for the 3D proposed formulation. The 

parameter P  is the equivalent vertical force. Excellent agreement with the analytical result [15] is observed. 

Further, the linear cohesive law presented better results when compared with the others constitutive laws. 

Moreover, equivalent results with the 2D Dipole formulation can also be mentioned. 
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3.2 Example 2: Concrete specimen in Mode I (Wedge-Splitting Test) 

In example 2, a concrete specimen with experimental results [17], is analysed by using the 3D Dipole BEM 

formulation. The dimensions and materials properties are presented in Fig. 5(a). The boundary mesh consists of 

about 2754 collocation points and 2176 quadrilateral linear boundary elements, Fig. 5(b). 

 

 

 

(a) (b) 

Figure 5. Wedge-Splitting specimen (a) Boundary mesh discretisation (b) 

In Figure 6(a), the horizontal displacement field (m) is presented in colour maps. There is a tendency to 

separate the solid in two independent parts, with the evolution of the imposed displacement. In Figure 6(b), it can 

be observed that the proposed 3D formulation was capable to represent the nonlinear behaviour and presents 

satisfactory responses in terms of force versus displacement curve. Futher, the exponential law presented a 

noticeable agreement with the experimental curve in the post peak load, and it is worth mentioning that the results 

obtained by de 3D Dipole BEM formulation are equivalent with the 2D Dipole formulation. 

 

 

(a) (b) 

 

Figure 6. Horizontal crack path in colour scale (m), Force versus displacement curve 
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4  Conclusions 

In this work, a tridimensional nonlinear BEM formulation for cohesive crack growth modelling was 

proposed. Such formulation is based on dipoles of stresses, which lead to an alternative approach to the classical 

dual BEM. The 3D Dipole BEM formulation proved to be a powerful technique to the modelling of cohesive crack 

growth, and its robustness and efficiency can be demonstrated in the light of the examples that were presented in 

this work. In addition, the 3D Dipole approach proved to be more accurate that the 2D Dipole BEM formulation. 
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