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Abstract. This paper is concerned with the robust position guidance and control of fully actuated multirotor
aerial vehicles subject to velocity constraint in dynamic environments involving external disturbances. The overall
method consists of an outer-loop guidance based on an acceleration-velocity-obstacles strategy and an inner stabi-
lizing control loop based on an integral sliding mode policy. The guidance strategy generates velocity commands
to reach a target position while avoiding collision with moving obstacles and respecting velocity bounds. On the
other hand, the integral sliding mode ensures that the velocity commands are, in theory, exactly tracked all the
time. The proposed method is numerically evaluated using a fully actuated octacopter and shows to be effective.
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1 Introduction

The multirotor aerial vehicles (MAVs) are expected to be extensively used for complex applications, such as
aerial manipulation. These applications can benefit from the use of fully actuated MAVs since they can indepen-
dently control their attitude and position [1, 2]. While performing these tasks, besides being subject to external
disturbances, the MAV can encounter static and dynamic obstacles, such as buildings and other aircraft. Aiming at
contributing to this topic, this paper establishes a hierarchical position guidance and control scheme for fully actu-
ated MAVs, which treats the guidance and the flight controller separately. The scheme contains an outer guidance
loop, which is entrusted with the collision-avoidance functionality, and an inner loop concerned with stabilization.

The robustness requirement for fully actuated MAVs flight control systems against disturbances and uncer-
tainties is well recognized and has effectively been addressed using sliding mode approaches [3–5]. The sliding
mode control (SMC) uses a high-frequency switching control to drive the system output to the so-called sliding
manifold, where the system ideally becomes insensitive to bounded parametric uncertainties and disturbances of
the matched type. In particular, Kotarski et al. [3] have adopted a first-order SMC for a fully actuated hexacopter
with tilted rotors. Yao et al. [5] have presented an integral first-order SMC for the same type of vehicle, but they
have used an arctangent approximation of the signum function to smooth the high-frequency control at the cost of
losing robustness. In this paper, we design a velocity controller using an integral sliding mode approach [6] and
exploit its insensitive property, which holds all the time, as a guidance strategy.

The guidance of MAVs among obstacles has been addressed in the literature using techniques such as model
predictive control (MPC) [7, 8], rapidly exploring random trees (RRT) [9], and velocity obstacles (VO) [10]. In
particular, the VO approach, introduced by Fiorini and Shiller [11], is a well-defined and simple technique that
has been widely used for guiding mobile robots in dynamic and crowded environments [12]. It defines a set of
velocity vectors that would result in a collision at some future time if the robot and obstacles kept their velocities
constant. Therefore, by continuously selecting a velocity outside this set we can guarantee collision-free guidance
since this selected velocity can be instantaneously achieved by the robot. Of course, such condition cannot be
achieved by physical robots due to acceleration (or control) bounds. To overcome this drawback, Van Den Berg
et al. [13] extended the VO concept to the so-called acceleration velocity obstacles (AVO). The AVO assumes that
the robot accelerates towards the selected velocity using proportional control, i.e., the acceleration is proportional
to the difference between the selected velocity and the current one. In this sense, it defines a set of velocity vectors
that would result in a collision at some time if the robot accelerates as assumed and the obstacles accelerate using
the same proportional control with the same parameter or, alternatively, if they keep a constant velocity. However,
due to disturbances and uncertainties, this condition is not realistic as well.
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This paper aims to fill this gap by studying the position guidance and control of fully actuated MAVs with
fixed rotors in dynamic environments involving external disturbances. We propose a hierarchical guidance and
control scheme that suitably combines the AVO strategy with an integral sliding mode control law. First, we
design the velocity controller using a first-order SMC to robustly stabilize the position dynamics. Second, we
design a guidance strategy based on the AVO method to generate velocity commands to the stabilizing controller.
The smoothness properties of these commands guarantees the existence of an integral sliding mode, which ideally
guarantees the exact tracking of the velocity command and the insensitivity of the closed-loop system with respect
to bounded uncertainties and disturbances of the matched type during all the time. Consequently, the harmonious
combination of the proposed guidance technique and velocity controller robustly guarantee collision-free guidance
and constraint fulfillment for fully actuated MAVs subject to model uncertainties and disturbances. We present our
formulation for spherical MAVs subject to speed constraint and moving among obstacles in the three-dimensional
space. We assume that the MAV exactly observe the obstacles’ position and velocity. In summary, to the best of
our knowledge, the main contributions of this paper are: 1) a three-dimensional flight control scheme combining
a guidance algorithm based on the AVO method with an integral sliding mode velocity controller, and 2) the
application of the aforementioned method to fully actuated MAVs with fixed rotors.

The remaining text is organized as follows. Subsection 1.1 presents the notation. Section 2 defines the prob-
lem. Section 3 presents the control design. Section 4 evaluates the proposed method using computer simulations.
Finally, Section 5 concludes the paper.

1.1 Notation

Matrices and algebraic vectors are denoted, respectively, by uppercase and lowercase boldface letters, while
geometric (Euclidian) vectors are denoted as a⃗. Sets are denoted by uppercase calligraphic letters as D. A Cartesian
coordinate system (CCS) is represented as Sb ≜ {B; x⃗b, y⃗b, z⃗b}, with B denoting its origin, and x⃗b, y⃗b, and z⃗b
representing the unit geometric vectors along its orthogonal axes. A null vector and a vector of ones of dimension
n ∈ Z>0 are denoted, respectively, by 0n and 1n. Consider two arbitrary algebraic vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn), the vector inequality x < y means that xi < yi, ∀i ∈ {1, . . . , n}. The Euclidean norm
and component-wise absolute value of x are denoted, respectively, by ∥x∥ and |x|. Lastly, an open disc of radius
ρ ∈ R>0 centered at p ∈ R3, the Minkowski sum of two sets, and the set subtraction are denoted, respectively, by
D (p, ρ) =

{
x ∈ R3 | ∥x − p∥ < ρ

}
, X ⊕ Y = {x + y | x ∈ X , y ∈ Y} , and X \Y = {x | x ∈ X , x /∈ Y} .

2 PROBLEM STATEMENT

Consider a ground reference CCS Sr ≜ {R; x⃗r, y⃗r, z⃗r} located at a point R on the ground, with z⃗r oriented
upwards, parallel to the local vertical. Further, consider a point A coinciding with the MAV center of mass.

The translational kinematics of the MAV w.r.t. Sr are described by

ṙA = vA, (1)

where rA ∈ R3 and vA ∈ R3 are, respectively, the position and linear velocity of the MAV.
Using the Newton’s second law, the MAV translational dynamics are described by

v̇A = −ge3 +m−1 (u + d) , (2)

where g ∈ R>0 is the gravity acceleration magnitude, m ∈ R>0 is the total mass of the MAV, u ∈ R3 is the control
force, and d ∈ R3 is the disturbance force lumping external disturbances and uncertainties.

It is worth emphasizing that (1)–(2) represents the three-degrees-of-freedom (3-DOF) translational dynamic
model of any fully actuated MAV, no matter its rotor configuration (number, type, and relative displacement).
However, for simplicity, we are particularly interested in fully actuated MAVs with fixed rotors.

Suppose that the MAV is subject to velocity constraint and moves among dynamic obstacles, i.e., obstacles
that can change their velocity. In this sense, the MAV position and velocity must belong to the admissible sets

rA ∈ P(t), (3)
vA ∈ V, (4)

where P(t) ⊆ R3 is the collision-free space, which varies as the obstacles move, and V ⊆ R3 is an admissible
velocity set.

Denoting a given target position by řA ∈ R3, we now define the main problem of this paper.
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Problem 1. The guidance problem is to robustly conduct the MAV described by (1)–(2) to the target position řA,
while respecting the constraints (3)–(4).

3 Hierarchical Control Architecture

To tackle the above problem, this paper adopts a hierarchical control architecture composed of an outer-loop
guidance and an inner stabilizing loop, as depicted in Figure 1. The latter has the objective of providing robust
stability, and the former is mainly entrusted with the collision-avoidance functionality.

Let us denote a command with an overbar in the corresponding variable. The guidance block receives the
target position řA and the obstacles’ position and velocity (represented by the set O) as input, the MAV position
and velocity as feedback, and the velocity command v̄A ∈ R3 as output. On the other hand, the velocity controller
receives the velocity command as input, the MAV velocity as feedback, and the control force command ū as output.

Figure 1. Hierarchical flight control architecture for fully actuated MAVs with fixed rotors.

To design the control strategy, we consider that the rotor dynamics are negligible, which is reasonable in
practice since the rotor dynamics are much faster than the position one. As a result, one can consider that the
control force u is equal to its command ū, and consequently, the velocity controller can be designed considering
the translational dynamic model of the MAV described by (1)–(2).

In this paper, the velocity controller is designed using an integral SMC [6] to robustly track the velocity com-
mand v̄A in the presence of the disturbance d. Conversely, the guidance is based on the AVO method and aims to
take the MAV to its target position řA while fulfilling constraints (3)–(4). The strategies are harmoniously com-
bined to ensure the existence of the sliding mode all the time, collision-free guidance, and constraint satisfaction.

3.1 Integral Sliding Mode Velocity Controller

Consider the objective of robustly tracking the time-varying velocity command v̄A(t) in the presence of
disturbances. To this end, let us define the velocity tracking error ṽA ≜ vA − v̄A, the sliding variable

s(t) ≜ ṽA(t), (5)

and its corresponding sliding set S ≜
{
(r̃A, ṽA) ∈ R6 | s = 03

}
.

Regarding the disturbance d and the velocity command v̄A, consider the following assumptions, respectively:

Assumption 1. The disturbance is bounded according to |d| ≤ dmax, where dmax ∈ R3 is a known vector with
positive components.
Assumption 2. The velocity command is continuous and satisfies v̄A(0) = vA(0).

The boundedness in Assumption 1 is reasonable in practice, although one can rarely obtain a non-conservative
estimate of the bound dmax without using an adaption scheme. Assumption 2 is not restrictive; it just requires the
knowledge of the MAV’s initial velocity and the use of a continuous command.

The following lemma guarantees the existence of an integral sliding mode of the system (1)–(2) in S. It is
worth emphasizing that by integral, we mean that s(t) = 03, ∀t ≥ 0.

Lemma 1. Under Assumptions 1–2, the following control law guarantees the integral sliding mode of the system
(1)–(2) in S:

ū = m
(
ge3 + ˙̄vA

)
− Ksign(s), (6)

where K ∈ R3×3 is a positive-definite diagonal matrix satisfying K13 = dmax + ϵ, with ϵ ∈ R3 being a vector
with positive components.
Proof. Consider the Lyapunov candidate function V (s) = sTs/2. From Assumption 2, the system (1)–(2) starts
the movement on the sliding surface. Therefore, to prove the integral sliding mode of the system (1)–(2) in S, it is
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sufficient to show that V̇ (s) < 0, ∀s ̸= 03. To this end, differentiating V (s) with respect to time, substituting (6)
into the resulting expression and choosing K13 = dmax + ϵ, one can show that

V̇ (s) = −m−1(s)T (Ksign(s)− d) ,

= −m−1
∣∣(s)T∣∣ diag(sign(s)) (Ksign(s)− d) ,

= −m−1
∣∣(s)T∣∣ (K13 − diag(sign(s))d) ,

≤ −m−1
∣∣(s)T∣∣ (dmax + ϵ− I3dmax) < 0, ∀s ̸= 03,

thus completing the proof. □

From the sliding variable definition (5), we can see that in the integral sliding mode the closed-loop system
is capable of exactly tracking the velocity command, i.e., vA(t) = v̄A(t),∀t ≥ 0.

Now, to solve Problem 1, the velocity command v̄A has to be generated in such a way to fulfill Assumption
2, respect constraints (3)–(4), and guide the MAV to the target position řA. These objectives are accomplished by
using a guidance strategy based on a three-dimensional formulation of the AVO method.

3.2 Guidance Strategy

Consider a spherical obstacle and a point B representing its center of mass. The obstacle has a radius ρB ∈
R>0, position rB ∈ R3, and velocity vB ∈ R3. Moreover, considering that the MAV is enclosed by a sphere of
radius ρA ∈ R>0, a collision occurs with the obstacle if

∥rA(t)− rB(t)∥ < ρAB, (7)

where ρAB ≜ ρA + ρB.
The VO method, proposed in Fiorini and Shiller [11], consider that the MAV and obstacle keep their velocities

constant, i.e., their position can be written, respectively, as rA(t) = rA(t0) + (t− t0)vA and rB(t) = rB(t0) + (t−
t0)vB, where t0 ∈ R>0 is an initial time instant. Substituting these expressions in the collision condition (7) and
dividing both sides by (t− t0), where t ∈ R≥t0 is the time, results in∥∥∥∥ rAB(t0)

(t− t0)
+ vAB

∥∥∥∥ <
ρAB

(t− t0)
,

where rAB ≜ rA − rB and vAB ≜ vA − vB. In this sense, the VO defines a set of velocities vA that will result in a
collision with the obstacle inside a time horizon τ ∈ R>0 if the MAV and obstacle keep their velocities constant.
It is represented by

VOτ
AB =

⋃
t0<t≤t0+τ

D
(
− rAB(t0)

(t− t0)
,

ρAB

(t− t0)

)
⊕ vB.

The procedure is as follows: selecting a velocity outside VOτ
AB guarantees that a collision with the obstacle

will not occur within the time horizon τ if the MAV and obstacle keep their velocities constant. Therefore, contin-
ually selecting velocities outside VOτ

AB guarantees collision-free guidance. However, this guarantee only holds if
the MAV instantaneously achieve the selected velocity, which may not be possible due to physical limitations.

To overcome this issue we propose a guidance strategy based on the AVO formulation. The original method,
proposed in Van Den Berg et al. [13], let the MAV accelerates towards the selected velocity using proportional
control, i.e., the acceleration is known and proportional to the difference between the selected velocity and the
current one. However, due to disturbances and uncertainties, the acceleration is not precisely known. In this paper,
this problem is bypassed by designing a guidance strategy based on the AVO method and combining it with the
integral SMC strategy. Instead of designing a proportional control, we design a feed-forward velocity filter to
fulfill the smoothness requirement of the velocity command v̄A in Assumption 2, and consequently guarantee the
existence of the integral sliding mode. The filter receives as input a target velocity selected by the AVO method,
defined by v̌A ∈ R3, and outputs the velocity command v̄A to the velocity controller, as depicted in Figure 2.

We design the velocity reference filter similarly to the proportional control of Van Den Berg et al. [13], i.e.,

˙̄vA = δ−1 (v̌A − v̄A) , (8)

where δ ∈ R>0 is a parameter.
From (8) it can be seen that the velocity command is minimally continuous, i.e., when v̌A is a discontinuous

function then ˙̄vA is also discontinuous, and consequently v̄A is continuous. Therefore, by choosing v̄A(0) = vA(0)
Assumption 2 is fulfilled. Regarding the time response of v̄A consider the following remark:
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Figure 2. Block diagram of the proposed guidance method.

Remark 1. Considering v̌A as a constant input and integrating (8), it can be seen that v̄A(t) → v̌A asymptotically
and |v̄A(t)| ≤ |v̌A|,∀t > 0.

Substituting (8) and (6) into the position dynamics (2), and integrating the resulting expression two times
with respect to time considering v̌A as a constant input, we obtain the following expression for the MAV position:

rA(t) = rA(t0) + (t− t0)v̌A + δ
(
e−(t−t0)/δ − 1

)
(v̌A − v̄A(t0)) . (9)

Considering that the obstacle keeps a constant velocity, its position can be written as rB(t) = rB(t0) + (t −
t0)vB. Substituting rB(t) and (9) into the collision condition (7), we obtain

∥rAB(t0) + (t− t0) (v̌A − vB) + g(t) (v̌A − v̄A(t0))∥ < ρAB, (10)

where g(t) ≜ δ
(
e−(t−t0)/δ − 1

)
. Dividing both sides of (10) by t− t0 + g(t) it becomes∥∥∥∥v̌A +
rAB(t0)− (t− t0)vB − g(t)v̄A(t0)

t− t0 + g(t)

∥∥∥∥ <
ρAB

t− t0 + g(t)
. (11)

Similarly to the VO method, the AVO defines a set of target velocities v̌A that will result in a collision with
the obstacle within the time horizon τ , if the obstacle’s velocity remains constant. It is represented by

AVOτ
AB =

⋃
t0<t≤t0+τ

D

(
(t− t0)vB + g(t)v̄A(0)− rAB(t0)

t− t0 + g(t)
,

ρAB

t− t0 + g(t)

)
.

The procedure is analogous to the VO method: selecting a velocity outside AVOτ
AB guarantees that the MAV

and the obstacle will not collide within the time horizon τ if the obstacle velocity remains constant. Continually
selecting velocities outside AVOτ

AB guarantees collision-free guidance for the MAV.
Now, to account for the velocity constraint (4), it has to be written in terms of the target velocity v̌A. To this

end, it can be concluded from Remark 1 and the integral sliding mode existence (vA(t) = v̄A(t)), that if v̌A ∈ V,
then vA(t) ∈ V, ∀t ≥ 0, and consequently (4) is satisfied. In this sense, we can define a set of admissible target
avoidance velocities as VAV = V\AVOτ

A, where AVOτ
A is the union of all the acceleration velocity obstacles of

the MAV. Note that, continually selecting v̌A inside VAV robustly guarantees collision-free guidance and fulfillment
of the velocity constraint (4). We highlight that he above robustness is a consequence of the existence of the integral
sliding mode, being the AVO method itself not robust.

Lastly, to completely solve Problem 1, we calculate v̌A according to the following minimization that aims to
guide the MAV to its target position řA:

v̌A = min
v∈VAV

∥vp − v∥, (12)

where vp ∈ R3 is a preferred velocity. This vector has a magnitude equal to the maximum admissible speed in
the direction of the target position. hen the MAV is near its target, the magnitude of vp is gradually decreased
according to the remaining distance. We highlight that vp can be designed using different strategies [11, 14].

4 Computational Implementation

To evaluate the proposed method, we simulate a scenario containing one spherical fully actuated octacopter
flying among forty five obstacles also represented by spherical fully actuated octacopters. The MAV has a radius
of 0.5 m, a mass of 1 kg, an initial position (0, 0, 5) m, and is required to move to the target position (22, 0, 5) m.
Moreover, it is subject to the periodic disturbance d(t) = [0.6,−0.6, 0.6]

T sin(0.2t), and its speed is restricted to
∥vA∥ ≤ vmax, where vmax = 1.5 m/s. The obstacles have a radius of 0.5 m, and five of them are static.

The simulation is coded in MATLAB using a time step of 0.01 s and the explicit first-order Euler integration
method. The proposed controller is compared to the original AVO method [13], which is implemented by using
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the control law u = mge3 + m (v̌A − vA) /δ, and letting the AVO method select the target velocity v̌A. For
this simulation, we have set K = I3, δ = 0.2, τ = 15 s, and approximated the minimum of (12) by uniformly
distributing samples inside VAV. A video containing the simulation of both methods is available at https:
//youtu.be/OInNCSwpT3E. It shows that the proposed method robustly guarantees collision-free guidance
for the MAV, while the original AVO method failed to achieve the same objective since collision occurs.

Figures 3–4 present, respectively, the simulation results for the proposed methodology and the original AVO
method. Figures 3(a) and 4(a) show the components of the MAV’s velocity and their respective commands. It can
be seen that the proposed controller performs an accurate tracking all the time. Figure 3(b) presents the Euclidian
norm of the sliding variable and shows that it is restricted to a small neighborhood of the sliding surface all the time,
thus confirming the existence of an integral practical sliding mode, and that chattering has a maximum amplitude
of 0.055 m/s. Figures 3(c) and 4(b) show the control inputs for both methods. Figures 3(d) and 4(c) show the norm
of the MAV velocity and the target velocity, respectively, for the proposed method and the AVO method. On one
hand it can be seen that the proposed method is effective in respecting the speed bounds, and on the other hand,
it can be seen that despite the original AVO method selecting target speeds inside the bounds, the MAV speed
actually violates them. Lastly, Figures 3(e) and 3(d) present the time evolution of the distance from the MAV to the
obstacles. Under the proposed method, the MAV is safely guided to the target position, while under the original
AVO method, the MAV collides with one obstacle, as it can be seen in Figure 4(e).

Figure 3. Results for the proposed method. (a): Velocity components and its commands. (b): Euclidian norm of
the sliding variable. (c): Control components. (d): Euclidian norm of the MAV velocity and the target one, and the
speed bounds. (e): Distance from the MAV to obstacles.

Figure 4. Results for the AVO method. (a): Velocity components and its commands. (b): Control components.
(c): Euclidian norm of the MAV velocity and the target one, and the speed bounds. (d): Distance from the MAV to
obstacles. (e): Zoom in on plot (d).
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5 Conclusions

This paper studied the robust guidance and control of fully actuated MAVs subject to velocity constraints
in dynamic environments involving external disturbances. The overall method consists of an outer-loop guidance
based on the AVO method and a stabilizing control loop designed using an integral SMC. These methods are har-
moniously combined to ensure the existence of the integral sliding mode, where, in theory, the velocity commands
generated by the guidance are exactly tracked all the time. Due to such exact tracking, the AVO method in fact al-
lows collision-free guidance and guarantees the fulfillment of the constraints. The proposed method is numerically
illustrated on a fully actuated octacopter flying among forty-five obstacles. It has shown to be effective in robustly
guiding the MAV to its target while avoiding collision with the obstacles and respecting the constraints. In future
works, the proposed method can be extended to reciprocal collision avoidance.
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