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Abstract.
Problem modeling through response surfaces, or meta-models, has been a great solution adopted for opti-

mizing problems with high computational cost, especially Kriging-based optimization algorithms. In recent years,
algorithms have been proposed which extend the traditional Kriging-based simulation optimization algorithms
(assuming deterministic outputs) to problems in the presence of noise or uncertainty. This paper approaching
stochastic kriging meta-model in a comparative study of the performance of three Kriging-based algorithms for
unconstrained minimization a noisy function. The Minimum Quantile criterion (MQ), stochastic Efficient Global
Optimization (sEGO) and Expected Improvement with Reinterpolation (EIR) will be the algorithms compared
using an analytical test function. The conclusions and insights obtained may serve as a useful guideline for re-
searchers aiming to deal with optimization problems, especially to apply Kriging-based algorithms to solve engi-
neering problems, and may be useful in the development of future algorithms.
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1 Introduction

Recent computational advances have allowed the mathematical models of engineering problems to become
highly complex, including a greater amount of data, details and refinements. Practical examples can be observed
when analyzing a beam by considering a higher-order beam model, plasticity, damage theories, and other sources of
non-linearity, and approximating the solution using a state-of-the-art finite element model. All of these procedures
would still be a rough representation of reality if the intrinsic randomness of materials (rock, soil, concrete) and
loads (wind, earthquake motion) were disregarded and a deterministic average was used [1].

The level of refinement of the models and the representation of randomness in the analyzes led us to opti-
mization problems that have a high computational cost associated with objective functions of difficult analytical
treatment. So, an efficient optimization algorithm must be able to find the best result in the shortest time. An
alternative to high cost functions optimization is approach the meta-models based optimization algorithms. The
primary motivation for using meta-models in simulation optimization is to reduce the number of expensive fitness
evaluations without degrading the quality of the obtained optimal solution.

One of the most popular meta-model is the Kriging, which has a long and successful tradition for modeling
and optimizing deterministic computer simulations [2]. Kriging is a Gaussian based meta-model, also known as a
Gaussian Process Regression model (GPR), whose purpose is to build a predictor surface of the objective function
based on known observations of points in the design domain [3]. The results are now predicted using this predictor
without resorting to the use of the primary source (objective function). The great advantage of this meta-model
is that it allows the quantification of the uncertainty of the response surface through the mean square error (MSE)
[4]. An extension for the application in noisy problems is Stochastic Kriging (SK) proposed by [5].

The representation of the stochastic problem occurs through objective functions that can be formulated as
expected value functions E[f(x, θθθ)], where x ∈ Rn is the vector of design variables with dimension n and
θ ∈ Rnt is the vector of stochastic parameters of dimension nt. Figure 1 shows an example of Kriging surface
based on noisy observations, f(x, θθθ), where the bar is the noise amplitude.
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Figure 1. Kriging meta-model on noisy observations

A traditional approach to optimization through Kriging is the Efficient Global Optimization method (EGO)
[6], this is one of the most popular algorithms for optimizing noiseless simulation; in this case, the fitted metamodel
is the Kriging deterministic model (see [7] for references on the use of EGO in constrained and multi-objective
optimization problems).

In stochastic simulation where the design variables are discrete, for example, the EGO may not be very
appropriate, as it ignores the noise in the observations, assuming that samples were taken with infinite precision
[8]. Research has been developed to extend the EGO to stochastic simulation, where most approaches assume
homogeneous simulation noise, which means that the noise variance does not depend on the x position. In [2] is
compared several algorithms based on Kriging to optimize functions with this kind of noise. In practice, however,
the noise is heterogeneous, and in the work of [9] they made a performance comparison between the optimization
algorithms based on Kriging that can handle heterogeneous noise, among them the Minimum Quantile criterion
(MQ) [10]. Another approach is the stochastic Efficient Global Optimization (sEGO), proposed by [11].

The methods mentioned above are said to be single objective, in this case the optimization process occurs
in relation to only one objective and the stochastic noise treatment information is represented directly in its for-
mulation. Another approach is multi-objective optimization algorithms, where the expected improvement in the
optimization process is measured against each separate objective, in general, the noise treatment strategy in these
methods comprises a second iterative process. An example of a multi-objective optimization algorithm is the Ex-
pected Improvement with Reinterpolation (EIR) method approach by [12] for the case of stochastic Kriging with
heterogeneous variance.

The goal of this paper is compare the performance of those three Stochastic Kriging-based algorithm op-
timization - MQ, sEGO and EIR - in a two analytic tests functions. The stochastic kriging metamodel will be
construt according to [5], with representation of the heterogeneous noise of the function and considered only box
constraints. This article is organized as follows. Section 2 details the Kriging-based optimization algorithms,
Section 3 presents the analysis and results of the problems and, lastly, conclusions are present in Section 4.

2 Kriging meta-model based optimization

Because the surrogate model, ŷ, is only an approximation of the true function f(x, θθθ) we wish to optimize,
enhancing the accuracy of the model are made new function calls, define as infill points (IPs), in addition to the
initial sampling plan. The use of Kriging meta-model is attractive because, not only can it give good predictions of
complex landscapes, it also provides a credible estimate of the possible error in these predictions. So, in Kriging-
based optimization algorithms, the error estimates make it possible to make tradeoffs between sampling where
the current prediction is good (local exploitation) and sampling where there is high uncertainty in the function
predictor value (global exploration), allowing searching the decision space efficiently [6].
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Kriging-based optimization algorithms start by simulating a limited set of input combinations (referred to as
initial sampling) and iteratively select new input combinations to simulate by evaluating an infill criterion (IC),
which reflects information from Kriging. The response surface is then updated sequentially with information
obtained from the newly simulated IPs. The procedure is repeated until the desired performance level is reached
and the estimated optimum is returned [13]. The remainder of this section briefly explains the search and the
replication strategy for each algorithm.

2.1 Minimum Quantile criterion - MQ

The minimum quantile criterion (MQ) was initially proposed by [14] and consists of carrying out a balance
between the global and the local exploration selecting as the next IP the point that minimizes a percentile of the
predictor obtained by SK, that is, using a weighted sum between ŷ and s2. That said, the quantile of the predicted
value is given by Equation 1 [9].

MQ(x+) = ŷ +Φ−1βs2(x+) (1)

where ŷ is SK predictor; s2 is the standard deviation obtained by the square root of ŷ, Φ is the cumulative proba-
bility density of the normal distribution and β = 0.5. So, the infill point in each iteration is:

x = argmin
x∈X

MQ(x+) (2)

In this method does not require information on SK variance (ŝ2).

2.2 stochastic Efficient Global Optimization - sEGO

The sEGO algorithm by [11] chooses the alternative with maximum augmented expected improvement (AEI)
as the next infill point:

AEI(x+) = E[max(ymin − ŷ, 0)]

(
1− σ̂2

ϵ (x
+)√

ŝ2(x+) + σ̂2
ϵ (x

+)

)
(3)

where ŷ is SK predictor, ymin is the Kriging prediction at the current effective best solution, i.e., the point with
minimum among the simuleted point, with β = 0.84. σ̂2

ϵ is the variance of the noise intrinsic to the stochastic
function and ŝ2 is SK variance. The first parcel of the expression could be calculated as:

EI(x+) =
(
ymin − ŷ(x+)

)
Φ

(
ymin − ŷ(x+)

ŝ(x+)

)
+ ŝ(x+)ϕ

(
ymin − ŷ(x+)

ŝ(x+)

)
(4)

where Φ and ϕ are the cumulative distribution function and probability density function respectively, and ymin is
the smallest sampled value of y. The next IP is finded maximizing AEI(x+), i.e., leads to the new point x+ with
the highest probability of improvement, either by sampling toward the optimum or improving the approximation
of the meta-model.

2.3 Expected Improvement with Reinterpolation - EIR

Approached by [12], the method proposes that, instead of modifying the EI for cases stochastic, let’s use SK
and deterministic Kriging together like noise-handling strategie.

After construction the predictions by SK at the support points, those will be used to build a new model in
Kriging, now deterministic, since the predictions will come free of intrinsic error. As this last model is noise free,
the classic EI [15] could be used as a metric to obtain new IPs. So, the Kriging prediction for the deterministic
case will be rewritten as:

ŷ = µ̂+ hTΨ−1(ŷr − 1µ̂) (5)

µ̂ =
1Ψ−1ŷr

1Ψ−11
(6)
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where µ̂ is the trend of the deterministic Kriging meta-model obtained with information about the response surface
constructed through SK model (ŷr), h is the correlation vector, Ψ is the covariance matrix of the all support points
and y is the vector of the approximate mean value of the objective function at each design point.

And, as we can use the SK predictor itself, the re-interpolation will only need the value of the new spatial
variance of the correlation between the support points.

σ̂2
ri =

1

n

[
(y − 1µ̂r)

T
∑̂−1

ψ
∑̂−1

(y − 1µ̂r)

]
(7)

3 Numerical test

3.1 One-dimension problem

A one-dimensional problem will be analyzed adapted from [15] for stochastic case. The function f(x, θθθ) :
X × Ω → R is given by:

f(x, θθθ) = (6x− 2)2sin(12x− 4).θ (8)

where x ∈ X = [0, 1] is the search domain and θθθ ∈ Ω is formed by the normally distributed random variables
θ ∼ N (1, 1). The plot of Figure 2 shows the input domain, to view the function’s key characteristics. It is possible
to observe that the variance of the stochastic parameter increases and oscile as it approaches the upper limit of
the search domain. In order to obtain a reliable construction of the function curve in its stochastic forms, 100,000
replications of the function per point were used.

Figure 2. One-dimension problem function (a) expected value; (b) variance

In Figure 3 the results was presented in a statistical way using the box plot technique for 20 simulations from
optimization algorithms. It is possible to conclude that the three algorithms obtained minimum values close to the
target value. All presented symmetry in the results, being the sEGO and EIR algorithms the ones that obtained
greater convergence. And in the MQ the outliers were more significant.

Comparing the average of the values obtained for the twenty simulations, presented in Table 1, we concluded
that the algorithm that presented the best result was the sEGO. The basic settings for executing the Kriging-based
algorithms are given in Table 3.

3.2 Two-dimension problem

In this section a two-dimensional problem will be analyzed adapted from [16] for stochastic case. The func-
tion f(x, θθθ) : X × Ω → R is given by:
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Figure 3. Boxplot for 1D problem result

Table 1. Minimum values for 1D problem.

Algorithms ymin

target value -9,033

MQ -8,8005

sEGO -9,0104

EIR -8,9961

f(x, θθθ) =

(
4− 2, 1x21 +

x41
3

)
x21.θ1 + x1.x2.θ2 +

(
−4 + 4x22

)
x22.θ3 (9)

where x ∈ X = [−1, 1] × [−2, 2] is the search domain and θθθ ∈ Ω is the two-dimensional space formed by
the normally distributed random variables θi ∼ N (1, σxi). The case will be analyzed for σx1 = 1, σx2 = 0, 8
and σx2 = 0, 5. The plot in Figure 4 shows the input domain where it’s possible to view the function’s key
characteristics. The function has three local minima, one of which are global.

In Figure 5 the results was presented in a statistical way using the box plot technique for 12 simulations from
optimization algorithms. It is possible to conclude that by the MQ algorithm there was a greater dispersion of the
results with a greater tendency of the data above the median. None of the methods showed discrepancies in values,
i.e., outliers. And the method with the best performance was the sEGO. Now, comparing the average of the values
obtained for twelve simulations, presented in Table 2, it’s concluded that all algorithms presented similar result.
The basic settings for executing the Kriging-based algorithms are given in Table 3.

Table 2. Minimum values for 2D problem.

Algorithms ymin

MQ -1,2827

sEGO -1,2885

EIR -1,2854
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Foz do Iguaçu, Brazil, November 21-25, 2022



Template file for CILAMCE-2022 full-length paper (enter here with the short title of your paper)

Figure 4. Two-dimension problem function

Figure 5. Boxplot for 1D problem result

4 Conclusions

In this paper, three algorithms - MQ, sEGO and EIR - based on Kriging for optimization via simulation
with heterogeneous noise were compared. The MQ algorithm is the only one that does not address information
about the noise variance of the stochastic parameter. That said, it was possible to observe that the quality of the
solutions returned by the MQ was strongly affected by its inability to identify good solutions, since it does not
address variance information in the iterative process. In general, the sEGO algorithm was the one that presented
the best performance with an optimal value closer to the target value and a small variance of results. In summary,
in the examples studied, it was essential to combine the algorithms with more intelligent replication strategies
that address noise handling of the stochastic function - sEGO and EIR. The use of Kriging-based algorithms for
optimizing modeled systems through stochastic simulation, especially with heterogeneous noise, is relatively new
and provides an active research area.
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Table 3. Valores mı́nimos da função.

Parameters
Problem 1D

Parameters
Problem 2D

Description

nrep = 20 nrep = 12 The number of simulations, i.e., number of repetitions of the optimization process.

n0 = 10 n0 = 20 The number of elements of the initial sample space of the meta-model will be adopted
n = 10× k, where k is the dimension of the problem, distributed by the Latin Hyper-
cube [6].

nt = 20 nt = 40 The number of elements of the initial sample space of stochastic parameter.

NIPs = 20 NIPs = 40 The stop criterion of the iterative process was defined by the maximum amount of
infill points.
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