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Abstract. Cold-formed steel (CFS) members stand out among steel structures notably due to their lightness, 

structural efficiency (high strength-to-weight ratio) and versatility. However, given their high width-to-thickness 

ratio, CFS are highly susceptible to instability phenomena (buckling). The objective of this research is to analyze 

the structural behavior of cold-formed steel hat-section beams under non-uniform bending about the major and 

minor-axis, regarding the risks of distortional failure. Through the Generalized Beam Theory (GBT), using the 

computational program GBTUL, the geometries where the distortional failure is predominant were selected, 

presenting: distortional modal participation (Pdist) greater than 85% and distortional critical buckling moments 

(McrD) significantly below their local (McrL) and global (McrG) counterparts. The beams were analyzed for two 

end support conditions that differ only by the restriction to warping (free or prevented), and were subjected to 

moments at the end sections, constituting different loading hypotheses. Through the computational program 

ABAQUS, a shell finite element model was developed to perform the buckling analysis on the selected elements. 

The results obtained with the model present appropriate values and the expected behavior, indicating that it 

adequately simulates the elements. In addition, they demonstrate how support conditions and loading affect the 

distortional critical buckling moments. 

Keywords: numerical analysis, cold-formed steel beams, distortional failure, non-uniform bending. 

1  Introduction 

Cold-formed steel (CFS) members stand out among steel structures notably due to their lightness, structural 

efficiency (high strength-to-weight ratio) and versatility – they are widely used in distinct segments of civil 

construction due to the vast variety of geometries that can be obtained in their manufacturing process. 

CFS members are fabricated by press-braking or cold roll-forming thin steel sheets, with thickness ranging 

from 0.4 mm to 8 mm. Given their high width-to-thickness ratio, CFS are highly susceptible to instability 

phenomena (buckling), in which a critical force causes the structure to fail before its ultimate strength is reached. 

This instability phenomena can occur through local (L), distortional (D) or global (G) buckling modes, or their 

interactions, that happen when the critical forces corresponding to different buckling modes exhibit close values. 

The member's structural performance is closely related to its geometry (cross-section dimensions and length), 

support conditions and loading. Therefore, according to the overall configuration, any mode of instability can be 

the critical mode (that is, the one corresponding to the lowest buckling load). The type of deformation presented 

by the structural element after buckling indicates the mode of instability that occurred: the local mode corresponds 

to the deformation of the cross-section elements (web, flange or lip), the distortional mode involves the 

deformation of the cross-section elements associated with the displacement of the edges and the global mode is 

characterized by the deformation of the member without changing the shape of the section, either by flexural or 

flexural-torsional buckling. 

Among the most commonly used numerical methods for stability analysis are the Generalized Beam Theory 

(GBT) and the Finite Element Method (FEM).  

The Generalized Beam Theory, developed by Schardt [1], is the most recent numerical method for stability 
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analysis and allows to quantify the percentage of participation of each instability mode of the profile, allowing a 

better data interpretation. Based on the GBT, Bebiano et al. [2] developed the computer program GBTUL, which 

allows to perform instability analysis on CFS profiles, determining the critical buckling force and the 

corresponding instability mode, in addition to displaying the signature curve. 

The Finite Element Method allows solving a complex problem by discretizing the structure into a series of 

elements of simple geometry, connected together through nodal points creating a mesh (the accuracy of the method 

depends on the type, quantity and size of the elements). It can be used to perform different types of analysis on 

structures such as static, thermal, acoustic and buckling analysis, however it must be calibrated – through 

comparison with results obtained in analytical, numerical and experimental methods – to ensure that it reproduces 

adequately its behavior. 

Once the stability analysis has been conducted, the design methods of CFS structural members can be 

performed, such as the Direct Strength Method (DSM). The method was developed by Schafer and Peköz [3], 

based on the studies developed by Hancock, Kwon and Bernard [4], and is adopted by the currently codified 

technical standards ABNT NBR 14762:2010 [5], AISI S100-16 [6] and AS/NZS 4600:2018 [7]. 

Hence, it is critical that the behavior related to instability phenomena be taken into account for the design 

and structural safety verification of CFS members. For the specific case of distortional failure in CFS hat-section 

beams under non-uniform bending, it is possible to observe a knowledge gap and lack of normative guidelines – 

the current technical standards do not present adequate formulations and provisions and there are few studies that 

deal with the topic. 

Studies on the distortional buckling mode focus almost exclusively on columns – uniformly compressed 

members – and, to a lesser extent, beams under uniform bending (about the major-axis, in most cases, such as 

Landesmann and Camotim [8]). Bending about the minor-axis is a significantly less studied problem, even though 

it is widely used in practical applications. Thus, there is a need to develop studies and to deepen the knowledge on 

the structural performance of these elements affected by the distortional buckling mode, in order to develop, 

calibrate or validate methods, applicable to such scenarios.  

Therefore, the objective of this research is to select a set of beams where the distortional buckling mode is 

predominant and to develop a finite element numerical model that adequately represents the behavior of these 

structural elements. In future works, the model can be used to analyze the post-buckling behavior of the members 

– by introducing physical and geometrical nonlinearities, such as elastoplastic material behavior and initial 

geometrical imperfections – and verify the applicability of the DSM in predicting failure forces. 

2  Beam geometry selection 

Based on the hat-section beams studied by Martins et al. [9] and through a “trial-and-error” procedure, the 

geometries (cross-section dimensions and length) where the distortional failure is predominant were identified by 

means of GBT buckling analyses performed in the program GBTUL. The program allows determining the critical 

buckling load, quantifying the percentage of participation of each buckling mode, as well as displaying the 

signature curve (a curve that relates the critical load with the profile length and provides better data interpretation). 

The geometries with distortional modal participation (PD) greater than 85% were selected. 

The beams were analyzed for two simple support conditions, named SCA (Support Condition A) and SCB 

(Support Condition B). The SCA beams present free major and minor-axis bending, prevented end cross-section 

torsional rotations and free warping (longitudinal displacement). The SCB beams differ only by also presenting 

prevented warping. 

The beams were subjected to major-axis (HM) and minor-axis (Hm) bending, with lips under compression 

in the latter case (worst condition), through the application of moments at the end sections, M1 and M2, establishing 

three load hypotheses (moment gradients): ψ = 1, ψ = 0 and ψ = −1, where ψ = M2 M1⁄ , and M1 is constant. 

In order to avoid the interaction between different buckling modes, geometries with distortional critical 

buckling moments (McrD) significantly below their local (McrL) and global (McrG) counterparts were selected, 

presenting McrL McrD⁄  and McrG McrD⁄ > 2. 

The cross-section elements – web (bw), flange (bf), lip (bl) and thickness (t) – of hat-section members are 

illustrated in Fig. 1 and the geometric parameters of the selected beams are presented in Tab. 1. Calculations were 

performed considering the material with elastic modulus E = 210GPa and Poisson's ratio ν = 0,3. 
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Figure 1. Cross-section elements of hat-section members. 

Table 1. Cross-section dimensions for selected beams. 

Beam bw (mm) bf (mm) bl (mm) t (mm) 

H1 120 80 10 2.5 

H2 125 80 10 3.0 

H3 130 80 10 2.5 

H4 135 90 10 3.0 

H5 140 90 10 2.5 

H6 150 120 10 3.5 

H7 160 90 10 3.0 

H8 160 100 10 2.5 

H9 200 120 10 3.0 

H10 210 110 10 3.5 

 

The lengths (L), distortional critical buckling moments (McrD), McrL McrD⁄  and McrG McrD⁄  relations, and 

distortional modal participations (PD) for the different moment gradients are presented in Tab. 2 to 4. 

Table 2 – Critical lengths, McrD and their relations, and modal participation – ψ = 1. 

Beam 

 SCA      SCB     

 
L 

(cm) 

McrD 

(kNcm) 

McrL

McrD

 
McrG

McrD

 
PD 

(%)  
L 

(cm) 

McrD 

(kNcm) 

McrL

McrD

 
McrG

McrD

 
PD 

(%) 

HM1  
35 

1033.20 3.08 50.49 95.16  
60 

1502.31 2.16 26.77 92.11 

Hm1  479.55 7.49 29.91 95.13  695.71 5.21 28.03 95.12 

HM2  
30 

1670.55 3.50 53.93 94.82  
45 

2489.66 2.41 36.42 91.56 

Hm2  756.13 8.37 33.71 93.00  1142.19 5.63 39.60 93.30 

HM3  
40 

1118.88 3.11 39.81 96.26  
55 

1652.80 2.14 32.26 91.97 

Hm3  466.17 7.56 27.75 94.73  711.50 5.04 38.37 93.54 

HM4  
45 

1621.23 3.44 36.82 96.67  
50 

2350.51 2.42 46.52 91.67 

Hm4  711.60 8.68 23.45 96.18  1104.55 5.71 48.71 94.11 

HM5  
40 

1060.39 3.09 62.23 95.60  
60 

1566.90 2.14 42.40 91.86 

Hm5  462.13 7.49 40.85 94.65  695.37 5.06 48.19 94.28 

HM6  
50 

1881.61 3.85 71.36 96.43  
45 

3200.50 2.37 117.14 88.48 

Hm6  972.64 10.07 34.67 97.69  1857.26 5.46 89.28 94.99 

HM7  
35 

1872.62 3.57 66.14 95.97  
45 

2994.96 2.29 56.66 90.68 

Hm7  723.24 8.18 53.27 90.16  1208.33 5.01 77.03 88.88 

HM8  
30 

1315.76 2.55 138.83 89.50  
65 

1594.07 2.15 55.34 91.94 

Hm8  591.97 5.67 90.89 88.65  678.72 5.02 67.58 93.73 

HM9  
40 

1759.25 3.52 149.71 94.85  
55 

2747.71 2.32 114.89 90.26 

Hm9  715.27 7.88 113.17 90.06  1156.70 5.02 147.97 89.87 

HM10  
50 

2937.24 4.00 57.44 96.51  
65 

4015.39 2.99 56.30 94.61 

Hm10  989.29 9.44 56.17 90.58  1399.16 6.78 93.83 89.75 
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Table 3 – Critical lengths, McrD and their relations, and modal participation – ψ = 0. 

Beam 

 SCA      SCB     

 
L 

(cm) 

McrD 

(kNcm) 

McrL

McrD

 
McrG

McrD

 
PD 

(%)  
L 

(cm) 

McrD 

(kNcm) 

McrL

McrD

 
McrG

McrD

 
PD 

(%) 

HM1  
35 

1676.32 2.21 57.76 89.70  
95 

1946.74 2.14 15.50 91.66 

Hm1  815.83 5.10 33.07 92.75  921.44 5.07 16.04 94.31 

HM2  
30 

2743.06 2.51 60.95 89.07  
70 

3399.60 2.22 20.72 89.72 

Hm2  1296.14 5.68 36.99 90.64  1563.57 5.23 22.68 92.13 

HM3  
40 

1757.33 2.28 47.04 90.98  
95 

2116.16 2.15 15.89 91.62 

Hm3  770.25 5.28 31.59 92.63  920.69 4.99 18.88 92.90 

HM4  
45 

2389.54 2.69 46.37 92.14  
75 

3266.55 2.19 27.96 89.55 

Hm4  1113.43 6.40 28.19 94.22  1545.45 5.17 29.33 92.96 

HM5  
40 

1700.43 2.24 72.03 90.02  
105 

1995.77 2.15 20.44 91.70 

Hm5  779.63 5.14 45.55 92.44  894.33 5.04 23.23 93.75 

HM6  
50 

2793.30 3.03 89.21 92.52  
60 

4499.96 2.22 88.00 89.09 

Hm6  1535.54 7.42 41.31 95.57  2539.57 5.12 69.49 93.21 

HM7  
35 

3045.06 2.52 75.49 89.37  
75 

3912.27 2.19 29.34 88.98 

Hm7  1227.90 5.63 59.03 87.91  1548.42 4.93 41.00 89.45 

HM8  
45 

1714.05 2.28 87.99 90.28  
105 

2102.77 2.09 30.21 90.79 

Hm8  750.20 5.17 60.06 92.09  910.04 4.82 36.60 92.80 

HM9  
40 

2871.71 2.49 170.23 88.21  
95 

3516.64 2.25 56.51 89.50 

Hm9  1223.62 5.47 124.46 87.71  1444.06 5.06 75.21 90.77 

HM10  
50 

4336.51 3.03 72.21 92.07  
65 

6583.36 2.29 64.45 88.36 

Hm10  1541.48 6.98 67.81 88.48  2392.31 5.05 103.74 87.76 

Table 4 – Critical lengths, McrD and their relations, and modal participation – ψ = −1. 

Beam 

 SCA      SCB     

 
L 

(cm) 

McrD 

(kNcm) 

McrL

McrD

 
McrG

McrD

 
PD 

(%)  
L 

(cm) 

McrD 

(kNcm) 

McrL

McrD

 
McrG

McrD

 
PD 

(%) 

HM1  
150 

1431.06 2.71 5.67 91.80  
215 

1867.17 3.26 5.62 88.94 

Hm1  670.64 2.04 5.14 94.47  884.79 2.10 7.88 93.94 

HM2  
95 

2446.41 2.92 10.29 90.78  
185 

3018.97 3.33 5.95 89.13 

Hm2  1117.44 2.07 9.81 93.34  1375.90 2.08 8.94 92.82 

HM3  
235 

1465.77 3.46 2.63 92.54  
245 

1931.91 3.79 4.67 89.58 

Hm3  620.87 2.05 2.81 93.49  835.65 2.09 7.59 93.05 

HM4  
85 

2454.36 2.78 18.88 90.63  
185 

2993.92 3.01 8.89 90.63 

Hm4  1160.53 2.08 17.12 93.67  1400.25 2.10 12.79 93.72 

HM5  
195 

1435.23 2.87 5.53 91.85  
245 

1898.12 3.32 7.00 90.18 

Hm5  631.30 2.05 5.56 94.35  847.64 2.06 10.83 93.50 

HM6  
50 

3500.39 2.55 105.22 85.92  
115 

4619.38 2.35 40.99 87.63 

Hm6  2109.26 2.37 67.20 89.99  2601.83 2.22 43.90 92.76 

HM7  
225 

2440.18 3.60 3.58 93.37  
265 

3122.07 4.26 5.26 91.57 

Hm7  929.30 2.07 4.54 90.28  1205.92 2.11 10.24 90.73 

HM8  
235 

1443.89 3.00 5.88 92.39  
275 

1912.09 3.39 8.58 90.87 

Hm8  605.73 2.05 6.38 93.80  816.15 2.04 14.29 92.94 

HM9  
145 

2478.51 3.04 22.39 91.99  
275 

3034.90 3.45 13.79 91.39 

Hm9  998.44 2.09 26.26 92.19  1223.16 2.09 25.35 91.49 

HM10  
185 

3857.10 3.69 8.96 92.98  
285 

4765.63 4.34 8.21 92.74 

Hm10  1351.54 2.12 12.97 88.54  1681.22 2.10 18.50 87.67 

 

In addition, Fig. 2 illustrates the signature curves of beam H4, exhibiting the behavior of the distortional 

critical buckling moment as a function of length (logarithmic scale), for the different loading hypotheses. 
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Figure 2. Signature curves (McrD × L) for different moment gradients (ψ). 

3  Shell finite element analysis 

A numerical model was developed to perform buckling analyses using the Finite Element Method (FEM) 

through the program ABAQUS. 

Since the plates that constitute CFS members have small thickness, a shell element denominated S8R was 

chosen for the model: an 8-node quadrilateral element with reduced integration. In order to estimate the most 

appropriate mesh refinement, ensuring an accurate solution and an optimized analysis processing time, a 

convergence study was performed and a 5 mm × 5 mm mesh was adopted. 

The SCB beams, that differs by the restriction to warping, were modeled by attaching rigid plates to their end 

cross-sections (elastic modulus E = 2100 GPa) and by applying transverse displacement constraints and axial 

rotation constraints directly at the plates. Likewise, at the beam mid-web mid-length point an axial displacement 

constraint was applied. For this support condition, the unitary moments were applied directly at the rigid plates. 

4  Results 

Through the linear perturbation analysis procedure, the critical buckling moment values and the 

corresponding instability mode are obtained. The buckling analysis is performed using the eigenvalue method (to 

determine the critical force) and the eigenvector method (to determine the buckling mode). The values presented 

correspond to the smallest eigenvalue (and respective eigenvector), however, the method allows calculating the 

other possible solutions for the system. 

The critical buckling moments obtained via the numerical model (MAbq) and their relation with the critical 

buckling moments obtained via GBTUL (MGBTUL) – shown in Tab. 2 to 4 as McrD – are presented in Tab. 5 and 

6, for the different moment gradients. 
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Table 5 – Critical buckling moments MAbq and their relation with MGBTUL – SCA. 

Beam 
ψ = 1  ψ = 0  ψ = −1 

MAbq (kNcm) MGBTUL M⁄
Abq

  MAbq (kNcm) MGBTUL M⁄
Abq

  MAbq (kNcm) MGBTUL M⁄
Abq

 

HM1 1022.10 1.01  1640.70 1.02  1398.40 1.02 

Hm1 473.68 1.01  798.35 1.02  657.01 1.02 

HM2 1642.90 1.02  2665.10 1.03  2385.70 1.03 

Hm2 741.88 1.02  1257.90 1.03  1090.90 1.02 

HM3 1109.30 1.01  1724.00 1.02  1403.00 1.04 

Hm3 461.96 1.01  756.00 1.02  599.02 1.04 

HM4 1607.10 1.01  2342.00 1.02  2397.90 1.02 

Hm4 705.41 1.01  1091.70 1.02  1134.60 1.02 

HM5 1051.90 1.01  1670.00 1.02  1399.20 1.03 

Hm5 457.68 1.01  765.53 1.02  617.79 1.02 

HM6 1868.20 1.01  2746.00 1.02  3399.10 1.03 

Hm6 963.99 1.01  1507.40 1.02  2042.30 1.03 

HM7 1847.30 1.01  2970.90 1.02  2342.20 1.04 

Hm7 712.71 1.01  1197.80 1.03  898.71 1.03 

HM8 1293.80 1.02  1687.70 1.02  1403.50 1.03 

Hm8 579.62 1.02  738.59 1.02  591.78 1.02 

HM9 1740.80 1.01  2812.20 1.02  2434.90 1.02 

Hm9 706.54 1.01  1198.60 1.02  982.88 1.02 

HM10 2913.90 1.01  4258.30 1.02  3761.70 1.03 

Hm10 980.49 1.01  1512.00 1.02  1320.40 1.02 

Table 6 – Critical buckling moments MAbq and their relation with MGBTUL – SCB. 

Beam 
ψ = 1  ψ = 0  ψ = −1 

MAbq (kNcm) MGBTUL M⁄
Abq

  MAbq (kNcm) MGBTUL M⁄
Abq

  MAbq (kNcm) MGBTUL M⁄
Abq

 

HM1 1469.00 1.02  1917.20 1.02  1806.60 1.03 

Hm1 682.21 1.02  898.62 1.03  852.20 1.04 

HM2 2415.70 1.03  3354.60 1.01  2915.20 1.04 

Hm2 1106.40 1.03  1512.70 1.03  1317.00 1.04 

HM3 1615.90 1.02  2084.90 1.01  1872.90 1.03 

Hm3 695.85 1.02  897.72 1.03  808.68 1.03 

HM4 2288.60 1.03  3237.70 1.01  2894.50 1.03 

Hm4 1074.10 1.03  1499.20 1.03  1340.90 1.04 

HM5 1535.00 1.02  1971.00 1.01  1841.10 1.03 

Hm5 681.41 1.02  873.85 1.02  818.85 1.04 

HM6 3088.50 1.04  4580.80 0.98  4699.30 0.98 

Hm6 1782.70 1.04  2458.30 1.03  2499.70 1.04 

HM7 2898.40 1.03  3877.40 1.01  3020.50 1.03 

Hm7 1165.60 1.04  1502.00 1.03  1165.80 1.03 

HM8 1564.30 1.02  2084.30 1.01  1858.20 1.03 

Hm8 666.01 1.02  889.76 1.02  790.40 1.03 

HM9 2673.20 1.03  3513.30 1.00  2956.20 1.03 

Hm9 1122.90 1.03  1409.40 1.02  1181.60 1.04 

HM10 3934.70 1.02  6650.40 0.99  4635.80 1.03 

Hm10 1369.20 1.02  2316.10 1.03  1624.80 1.03 

 

From the results, it is possible to observe that the greatest differences between the moments obtained by the 

two distinct methods are approximately 4%, which indicates that the numerical model adequately simulates the 

profiles behavior. The deformed configuration of the beams also presents the expected aspect – distorted cross-
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section elements associated with the displacement of the edges – in the different support conditions and loading 

hypotheses, as shown in Fig. 3 for the beam H2, confirming the suitability of the developed model. 

 

 

Figure 3. Distortional buckling: deformed configurations. 

5  Conclusions 

From the results, shown in Tab. 2 to 6 and in Fig. 1, it is possible to observe how the member's structural 

performance is affected by its geometry, support conditions and loading: (i) beams subjected to non-uniform 

bending present higher distortional critical buckling moments when compared to beams subjected to uniform 

bending and (ii) SCB beams have higher distortional critical buckling moments than SCA beams. For the same 

length, the values increase in the sequence ψ = 1 → 0 → −1 and SCA → SCB, as observed by Yu and Schafer 

[10]. This behavior can be observed either in beams subjected to bending around the major or minor-axis. 

Moreover, based on the highest difference between the distortional critical buckling moments obtained 

through FEM and GBT, shown in Tab. 5 and 6, and based on the deformed configuration of the beams illustrated 

in Fig. 3, it is possible to conclude that the numerical model developed in this study adequately simulates the 

structural behavior of CFS hat-section beams under non-uniform bending about the major and minor-axis, 

regarding the risks of distortional failure. 
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