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Abstract. The super-twisting algorithm (STA) is a finite-time stable algorithm that can be employed in control
and observation of dynamical systems to ensure a good transient performance of tracking and estimation errors.
However, only a conservative estimation of the convergence period can be obtained when using a classical STA.
To address this limitation, the present work proposes two novel specified-time stable algorithms, in which the
convergence instant can be directly specified as a system parameter. For the first one, we modify the right-hand
side of an STA by replacing its non-smooth continuous term with a time-varying specified-time stabilizing function.
For the second one, we alter the previously obtained system to recover the conventional STA performance after
the specified period. We extensively analyze the algorithms’ sensitivity to variations in each of their parameters
through numerical simulations. With proper tuning, the last proposed dynamic system is shown to provide robust
convergence to the origin at a specified instant of time.

Keywords: Finite-time stability, fixed-time stability, specified-time stability, second-order sliding modes, super-
twisting algorithm.

1 Introduction

The super-twisting algorithm (STA), proposed by Levant [1] and further studied by a plethora of authors
such as Davila, Polyakov, Moreno, and Nagesh [2–7], is a popular second-order sliding mode dynamic system
that provides robust finite-time convergence to its state origin. However, distancing the initial states of said sys-
tem indefinitely further from the equilibrium point causes the estimated upper bound of the convergence time to
approximate infinity. A stronger form of finite-time stability, whose settling time estimation is a bounded function
of the system’s initial condition, was studied by Polyakov [8] and denoted in his work as fixed-time stability. De-
spite its advantage over finite-time stability, the settling time observed in simulations has shown to be a fraction
of the settling time estimated bound, as illustrated in the works of Cruz-Zavala et al. [9] and Basin et al. [10].
To further improve on the aforementioned stability concepts, we claim that it is possible to devise an STA-like
algorithm whose settling instant is a tunable parameter that explicitly appears in its mathematical model. To this
new property, we have given the name specified-time stability.

Cruz-Zavala et al. [9] have developed a dynamic system based on the STA that provides fixed-time stability
to its state origin. However, the estimate of the settling time is over a hundred times larger than the instant
observed in the simulations, illustrating a conservatism of this estimation. An improvement of this method, using
an adaptive STA-like algorithm, has been investigated by Basin et al. [11]. Their proposed method provides an
estimated settling time bound closer to the value seen in their simulations, but their estimation considers that
convergence is achieved once the states are driven to a vicinity of the state-space origin, rather than to the origin
itself. Sánchez-Torres et al. [12, 13] and Jimenez-Rodriguez et al. [14, 15] have investigated the predefined-time
stability property, which employs an exponential time-invariant stabilizing function containing the settling time
upper bound as an explicit parameter. To the best of our knowledge, this property has not yet been investigated
using a non-exponential stabilizing function, nor on an STA-like system.

To fill the aforementioned gaps in the literature, the present paper investigates the concept of specified-
time stability using a polynomial time-varying stabilizing function on two modifications of an STA-like structure.
The resulting systems are shown to present, with proper tuning of their parameters, finite-time convergence at
a specified instant of time tr, which explicitly appears as one of their parameters. The proposed algorithms are
simulated in a variety of scenarios, to investigate their performance sensitivity to parameter variations. In particular,

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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we also analyse the effects of altering the sampling time in numerical simulations and how this affects the chattering
amplitude and the convergence of the system’s states.

The remaining text is organized as follows. Section 2 formulates the specified-time modified STA algorithms
and states the paper’s problem. Section 3 evaluates the proposed algorithms under variation of their parameters
using numerical simulations. Finally, Section 4 concludes the paper.

2 Problem Statement

Consider the super-twisting algorithm in the form provided by Moreno and Osorio [6]:

ẋ1 = −k1 sig (x1) + x2, (1)
ẋ2 = −k2 sign (x1) + δ, (2)

where x1 ∈ R and x2 ∈ R are its state variables, sig (ξ) ≜ |ξ|1/2 sign (ξ), k1, k2 > 0 are tunable gains, and δ ∈ R
is an unknown, but bounded, disturbance. As the system in eqs. (1)–(2) has a discontinuous right-hand side, its
solution will be understood in the sense of Filippov [16].

For this study, we propose two modifications to the STA. For the first one, named specified-time stable super-
twisting algorithm (STSSTA), we alter the first equation of the algorithm, substituting its non-smooth continuous
term as follows:

ẋ1 = −σ(t, x) + x2, (3)
ẋ2 = −k2 sign (x1) + δ, (4)

σ(t, x) ≜

 n
tr−tx, t ∈ [t0, tr),

g(x), t ∈ [tr,∞),
(5)

where n ∈ R>1 is the specified time convergence rate, tr is the specified settling instant, and g(x) ≜ 0.
This novel algorithm, however, has a peculiarity. Once the instant tr is reached, the first term in the right-hand

side of eq. (3) becomes zero. From this instant forward, the behavior of ẋ1 is guided by the behavior of the state
x2. Therefore, if by the time tr, the state x2 has not converged to zero, x1 will leave zero, with no guarantees of
reconvergence. To avoid dealing with the aforementioned peculiarity, we propose the second modification to the
STA, named specified-time stable complementary super-twisting algorithm (STSCSTA). For this new algorithm,
we assume g(x) ≜ k1 sig (x1).

Under the STSCSTA dynamics, the states will behave as under the dynamics of the STSSTA while t ∈ [t0, tr),
and then assume the dynamics of the conventional STA throughout the remainder of the experiment. An example
of the proposed algorithms’ dynamics is illustrated by Fig. 1. Note that the blue line in Figs. 1b and 1d has not
converged to zero at tr. From this instant forward, the states oscillate around zero for the simulation using the
STSSTA, whereas the STSCSTA is shown to drive both states to the origin.

The purpose of this paper is to study the specified-time stability property of the system in eqs. (3)–(4), using
both definitions of g(x).

3 Simulation Analysis

Denote by Ω ≜ (x10 , x20 , k1, k2, n, tr, Ts) the vector containing the algorithms’ parameters, where
(x10 , x20) are the states’ initial values and Ts is the sampling period. In this section, we will thoroughly in-
vestigate how the variation of each of the parameters in Ω affects the proposed algorithms’ performance.

3.1 On altering the sampling period

It is important to choose a suitable sampling period when analyzing algorithms with switching or time-varying
terms, such as the STA and its proposed modifications. The existence of the switching term incurs an oscillating
behavior on the system’s states, denominated chattering. If Ts is poorly adjusted, the switching term will cause the
excursion of the states to last longer. Therefore, although theoretically it can be proven that the states converge to
zero for the conventional STA, in numerical simulations and practical applications the convergence of switching
algorithms has to be understood as a convergence to an oscillating behavior around zero, whose amplitude is
reduced when sampled at smaller intervals of time. Figures 2 and 3 demonstrate this aspect.
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Figure 1. Comparison of the STSSTA (Figs. a and b) and STSCSTA (Figs. c and d) algorithms, for two different
convergence rates. Simulation parameters: xi0 = (−1, 0.5), k1 = 1, k2 = 3, tr = 1s, Ts = 10−4s and δ = 0.

As seen in Fig. 1, for n = 3.5 the states converge to zero at the specified instant tr. But Fig. 2d illustrates
that the states converge to neighborhoods of the origin, whose sizes decrease as faster sampling rates are adopted.
The same cannot be said about the behavior of the states in Fig. 2b, for which the small value of n does not provide
the desired convergence, and increasing the sampling rate does not remove the steady-state oscillation.
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Figure 2. Simulation of the STSSTA algorithm for varying sampling periods and two different convergence rates.
Simulation parameters: xi0 = (−1, 0.5), k2 = 3, tr = 1s, n = 2 for Figs. a and b, n = 3.5 for Figs. c and d, and
δ = 0.

A similar lasting steady-state oscillation can be seen in Fig. 3, when employing a slow sampling rate. Al-
though the STSCSTA can force the states to zero even after tr, the states are still affected by chattering and oscillate
periodically. With larger values of Ts, as the period of time between signal switches lasts longer, the states drift
inside a wider neighborhood of zero.
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Figure 3. Simulation of the STSCSTA algorithm for varying sampling periods. Simulation parameters: xi0 =
(−1, 0.5), k1 = 1, k2 = 3, n = 3.5, tr = 1s and δ = 0.

Another interesting aspect can be seen when simulating the system behavior with a high convergence rate
parameter. For the simulations in Fig. 4, the output obtained for a sampling period of Ts = 10−1s was omitted, as
it lead to divergences and jeopardized the graphs’ readability.

The first term on the right-hand side of the equality in eq. (3) reaches very high values when t approximates
tr. The excitation of this discontinuity, when sampled at larger intervals, results in the leaps seen in the graphs.

From the previous simulations, we can conclude that these algorithms benefit from smaller sampling periods,
as it also reduces chattering. In addition, the STSCSTA provides smaller chattering values than the STSSTA,
demonstrating that the inclusion of the complementary term is beneficial in practical applications.

To standardize, the sampling time of Ts = 10−4s will be adopted for the next simulations.
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Figure 4. Comparison of the STSSTA (Figs. a and b) and STSCSTA (Figs. c and d) algorithms for varying
sampling periods. Simulation parameters: xi0 = (−1, 0.5), k1 = 1, k2 = 3, n = 15, tr = 1s, and δ = 0.

3.2 On altering the settling time

Figure 5 illustrates that fixed parameters n and k2 do not provide finite-time convergence for every specified
settling time tr. It is also possible to see that, even in cases where the adopted parameters do not provide finite-time
convergence for the STSSTA algorithm, the complementary switching term ensures this convergence. However, it
can be said that the specified settling time restriction was not respected, since the states left zero for a short period
after tr.
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Figure 5. Comparison of the STSSTA (Figs. a and b) and STSCSTA (Figs. c and d) algorithms, for varying settling
times. Simulation parameters: xi0 = (−1, 0.5), k1 = 1, k2 = 3, n = 3.5, Ts = 10−4s and δ = 0.

To further analyze this relationship between n and tr, let us simulate the algorithms while modifying n for
fixed values of reaching time. Due to the afore demonstrated additional benefits, this paper will hereinafter focus
on the study of the STSCSTA.

3.3 On altering the convergence rate parameter

By varying the convergence rate parameter n, for different values of tr, it is possible to see that smaller
reaching times require faster convergence rates. To facilitate empirical results readability, let us assume that n ∈
N>1, and that convergence is reached once the oscillation of the states after tr is only due chattering.

Figures 6a–6b show that, for a specified settling time of tr = 0.5s, the states start to converge to zero for
n ≥ 8. Figures 6c–6d show convergence for n ≥ 3 for a specified settling time of tr = 1s. The complementary
term forces the convergence in the cases that both states are not driven to zero at the specified instant. Figure 6 also
illustrates that by increasing n, the excitation of the discontinuity for t close to tr also increases, which results in
a larger, although brief, deviation from the origin.

From the previous graphs, it is possible to conclude that, for fixed values of the other algorithm’s parameters
in Ω, smaller settling instants require larger values of n. Also, all values of n larger than the minimum necessary
will too provide convergence. However, overdimensioning this parameter will increase the deviation of the states
after the specified tr. This effect can be mended by increasing the sampling rate, but it would require more
computational power, which can be unfeasible in practical applications.

3.4 On altering the switching gains

The switching gain k2 has two main roles in the proposed algorithms: to define the slope of x2 oscillating
behavior, and to provide state convergence despite of the influence of disturbances or uncertainties.

Figure 7 illustrates that k2 has an important role on the convergence of the states. This can also be concluded
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Figure 6. Simulation of the STSCSTA algorithm for varying specified-time convergence rates. Simulation param-
eters: xi0 = (−1, 0.5), k1 = 1, k2 = 3, Ts = 10−4s, δ = 0, tr = 0.5s for Figs. a and b, tr = 1s for Figs. c and d.

when analysing eq. (4). As n controls how fast x1 converges to zero, it also controls how fast the sign function
switches. In addition, k2 defines the variation rate of x2 while the sign of x1 remains unchanged. Therefore,
properly choosing both these parameters is crucial to guarantee that x2 converges to zero at t ≤ tr. By comparing
Figs. 6b and 7b, it is possible to see how different values of k2 affect the algorithm’s performance for a fixed
convergence rate n = 6. Once again, the STSCSTA is capable of forcing the convergence for every value of k2
tested, although not always respecting the specified settling time restriction. For this algorithm, a proportional
relationship between the switching gain and the chattering amplitude can be observed.
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Figure 7. Simulation of the STSCSTA algorithm for varying switching gains. Simulation parameters: xi0 =
(−1, 0.5), k1 = 1, n = 6, Ts = 10−4s, δ = 0, tr = 0.5s for Figs. a and b, tr = 1s for Figs. c and d.

The gain k1 is used only in the STSCSTA algorithm. Its role is to mitigate the oscillation of the states, in
cases where they have not converged to the origin in t ≤ tr or when the excitation of the discontinuity in eq. (3)
drives the states out of the origin. Also, larger values of k1 yield faster convergences in said cases. For k1 = 0, the
STSCSTA behaves exactly as the STSSTA.

3.5 On altering the states initial values

From the previously defined vector Ω, the last parameters to be analyzed are the states’ initial values x10 and
x20 . Tables 1a and 1b summarize the data collected through simulation of different initial values. The tables show
that, for a fixed value of k2, the minimum value of n that provides convergence at tr changes according to the
initial states. Moreover, when increasing the value of k2, these minimum values of n reduce significantly.

Table 1. Sensibility of the algorithm to variation of initial conditions, measured by obtaining the smallest value of
n that provides convergence for different values of switching gain.

x20

x10 -10 -5 -1 0 1 5 10

-2.5 4 4 4 4 30 54 64
-0.5 6 5 3 3 3 7 9
0 7 6 3 3 3 6 7
0.5 9 7 3 3 3 5 6
2.5 64 54 30 4 4 4 4

(a) k2 = 3

x20

x10 -10 -5 -1 0 1 5 10

-2.5 4 4 4 3 4 6 8
-0.5 5 4 4 3 4 5 6
0 5 4 4 3 4 4 5
0.5 6 5 4 3 4 4 5
2.5 8 6 4 3 4 4 4

(b) k2 = 8
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3.6 On introducing a bounded disturbance

Let us define a bounded differentiable disturbance signal δ = ρ cos (4πt). As previously mentioned, the
switching gain k2 is also responsible to counteract the effect of external disturbances or model uncertainties. To
analyze the obtained response for a disturbed system, using different ρ values, let us assume that robustness is
reached once there is no visual influence of the applied disturbance on the response of xi after the specified tr.
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Figure 8. Simulation of the STSCSTA algorithm for varying switching gain and two different disturbance bounds.
Simulation parameters: xi0 = (−1, 0.5), k1 = 1, n = 3.5, tr = 1s, Ts = 10−4s, ρ = 2. for Figs. a and b, and
ρ = 5 for Figs. c and d.

Figure 8 illustrates that larger values of switching gain k2 are required in order to confer to the system
robustness to larger disturbances. Also, even in cases that the disturbance upper bound is smaller than k2, there is
the possibility that it forces x2 to assume a value different than zero at tr, causing the states to be forced to zero
after the specified settling instant, as seen in previous examples. It is important to remark that, when affected by
bounded disturbances with an offset greater than k2, the states will diverge, as the right-hand side of eq. (4) will
not change its signal throughout the experiment.

3.7 On comparing to the conventional STA

The original STA does not provide to the user an explicit reaching instant, nor can it be easily calculated from
its switching gains. Theorems that prove the algorithm’s finite-time convergence only specify an upper bound for
the reaching time, but cannot pinpoint the exact instant of convergence.

For the simulations illustrated in Fig. 9, the values of k1 and k2 were carefully chosen (through trial and error),
to provide convergence at exactly tr for both methods. The obtained results are very similar, but determining the
switching gain that provided convergence at tr for the STA was an extenuating task, whereas it is defined only by
a parameter for the STSCSTA.
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Figure 9. Simulation comparing STSCSTA and STA. Simulation parameters: xi0 = (−1, 0.5), k1 = 2.737,
k2 = 10, n = 3.5, tr = 1s, Ts = 10−4s, and ρ = 5.

4 Conclusions

The modified super-twisting algorithms provide the desired finite-time convergence at a specified instant of
time with the proper choice of the parameters in the vector Ω, as shown by the simulations. The introduction of the
complementary term grants robust stability to the system after tr, while also reducing the chattering effect. The
state x1 converges empirically to zero at tr for any n > 1, whereas the behavior of x2 depends on the values of
n and k2. Large values of n cause the states to briefly diverge at t close to tr, whereas large values of k2 incur
in larger chattering. Therefore, it is beneficial to choose the smallest values of these parameters that still yield the
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desirable convergence. For future works, we intend to define an equation that calculates n and k2 that provide the
desired performance, based on the other values in Ω and the disturbance upper bound, as well as to investigate the
application of these algorithms for states observation.
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