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Abstract. Depending on the stress magnitude in the interface of rebar and concrete, relative displacements may 

develop. Thus, to develop a reliable numerical model, interaction between rebar and concrete must be included by 

a bond slip constitutive relationship. Therefore, in this work we propose a numerical model to evaluate the bond 

loss between reinforcement and concrete, based on the Positional Finite Element Method. In this method, 

geometric nonlinearities are considered and static equilibrium are obtained though the Principle of Stationary 

Potential Energy, considering total Lagrangian description. An incremental-iterative Newton-Raphson procedure 

was used to solve the non-linear system. Fibers (rebars) are immersed in the matrix (concrete) though nodal 

kinematic relationships, allowing mesh independency. Physical nonlinearity for concrete is considered by Mazars 

damage model, and for reinforcement it is considered an elastoplastic constitutive relationship. Bond rupture is 

simulated by Lagrange multipliers and relative displacement of matrix and fiber (slipping) is made up by a 

dimensionless bonding element after rupture. Results are compared to experimental and analytical examples, 

showing that the proposed method is reliable and accurate. 
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1  Introduction 

The bond between rebar and concrete in reinforced structures is the basic mechanics that allows transfer of 

forces between materials and restrain slipping. Usually, perfect bonding is considered and any relative 

displacement is neglected, thus neglecting the influence of interfacial transition zone (ITZ). Such simplification is 

accurate enough to simulate the global behavior of the structure and it is adequate to evaluate global safety in its 

useful life, as long as small displacements and rotations are considered. However, as structure is locally or globally 

overloaded, or as it undergoes any deterioration mechanisms, cracking and structural instabilities may develop, 

requiring an accurate description of the mechanical effects, including the loss of adhesion and bond slipping. 

A useful life analysis without the loss of adhesion mechanism, will disregard the possibility of bond rupture. 

It is major drawback since this rupture is fragile, due to the following mechanics: crushing of concrete along rebar 

ribs, shearing of concrete around rebar, or, more frequently, longitudinal cracking of concrete cover along 

reinforcement (Barbosa and Sanchez Filho [1]). Thus, in order to attain a realistic analysis of reinforced concrete 

structures, one must include the interaction between reinforcement and concrete and the mechanism of stress 

transfer between these materials, therefore including failure modes associated to bond loss. 

However, the mechanism of loss of adhesion is quite complex, and several uncertainties are involved for each 

constituent material and for the interaction between them. Steel can be considered homogeneous with well-defined 

properties, but concrete is heterogeneous. Besides, the reinforced concrete structure may present non-linear 

behavior depending on the stresses to which it is submitted, either from material non-linearities or geometric non-

linearities (Marins Neto [2]). 

The physical nonlinear behavior of the reinforced concrete is mainly due to cracking, shrinkage and creep, 

modifying the composite response and stress transfer between fiber and matrix depending on the deformation state.  

In a finite element analysis, physical non-linearities can be considered through complex constitutive relationships, 
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as there is no direct (linear) proportionality between stresses and strains depending on the applied load. 

The geometric nonlinearity of a structure must be considered whenever moderate displacements take place. 

In this condition, equilibrium depends not only from on its initial geometry but also on the displacements 

themselves, leading to additional efforts. 

When the finite element method is employed to model the bond slip, an additional difficulty arises to simulate 

the loss of adhesion – the connection of fiber and matrix are made though common nodes, which implies that no 

slipping may occur, imposing a compatibility condition of perfectly adherent materials. To consider slipping, 

connection elements are introduced to represent their interface and transmission of forces. These connection 

elements are governed by a constitutive law that establishes the non-linear relationship between the adhesion stress 

and slip based on experimental tests capable of describing the phenomenon. 

We adopt an alternative version of the Finite Element Method, based on nodal positions instead of 

displacements, based on the work of Bonet et al. [3], Coda [4] and Coda [5]. Furthermore, the variational form is 

derived by the principle of stationary total mechanical energy, written in terms of current position, and the Saint-

Venant-Kirchhoff kinematics is used in the compatibility equation – displacement/deformation relationship. An 

embedding technique is used to simulate composites, including reinforced concrete, whereas the reinforcement 

stiffness is immersed on the matrix elements considering that it adheres perfectly to the matrix (see, for instance, 

Paccola, Piedade Neto and Coda [6] and Paccola and Coda [7]).  

In this work, we propose a technique that allows immersion of the reinforcement on the matrix but slipping 

may still take place. Concrete physical non-linearity is considered by Mazars damage model, and by an 

elastoplastic constitutive model for steel rebars. Bond slipping is simulated either by Lagrange multipliers and by 

dimensionless binding element that connect domains (matrix and fiber elements), following a limit state non-linear 

equation based on constitutive relationship at the interface. Some examples are included to validate the proposal. 

2  Adhesion models 

2.1 Reinforcement immersion 

There are three ways to model the rebars in a finite element model of reinforced concrete (Simão [8], Hipólito 

et al. [9] and Wolenski et al. [10]) – distributed model, discrete model and embedded model, as seen in Figure 1. 

 

 

Figure 1. a) Distributed model; b) Discrete model; c) Embedded model 

In the distributed model, the fiber stiffness is uniformly distributed on the matrix elements, thus properties 

are homogenized as a single material (Fig. 1a), sometimes even disregarding the fiber orientation (isotopically). 

This model is used when only global results are expected. Nevertheless, there is no way to model bond slipping in 

this case, as fiber elements are assimilated within the matrix properties. 

In the discrete model, the fiber elements must be connected to the nodes of the matrix elements (Fig. 1b). 

Their stiffness are superimposed in the corresponding matrix degree of freedom. Notice that both domains (fiber 

and matrix) share the same node, thus the fiber displacement is conditioned to the matrix mesh geometry and 

displacement. One way to introduce bond slipping is to employ springs elements or continuous contact elements 

between matrix and reinforcement fibers, thus allowing relative displacements. 
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In embedded models, each fiber is considered as one-dimensional element immersed on the matrix, each with 

its own mesh (Fig. 1c). Fiber displacement are associated to the matrix by kinematic considerations, usually 

considering perfect adhesion between materials, thus no relative displacement is expected. To introduce slipping, 

extra nodes along the fiber elements are included, as in Balakrishna and Murray [11], Elwi and Hrudey [12], 

Allwood and Bajarwan [13] and Phillips and Wu [14], yet increasing the total number of degrees of freedom. Some 

authors also use fiber elements arbitrarily distributed in the matrix, but associate with the matrix mesh, as in 

discrete model, yet with their own nodes. For this reason, they often are classified as classify the model as semi-

embedded, as in Durand [15], Rosero [16] and Durand and Farias [17]. 

In this work, we used the embedded model though kinematic relations between fiber and matrix 

(reinforcement bar and concrete), without increasing the total number of degrees of freedom while perfectly 

adherent. To describe the bond slip, new degrees of freedom are introduced by a dimensionless element, without 

modifying either the matrix or fiber meshes. Since these meshes are independent, this method allows to apply 

boundary conditions directly to the rebar elements, which makes it an effective way for the analysis of fiber pullout 

tests. Details of the Positional FEM and the embedded technique, applied to concrete, are seen in Ramos et al [18] 

and Ramos and Carrazedo [19]. 

2.2 Interaction between steel fiber and concrete matrix 

With the reinforcement immersion technique already defined, an adequate representation of the interaction 

between rebar and concrete matrix is required. In this work, we used two mathematical elements – Lagrange 

multipliers and spring elements. The Lagrange multipliers are used to introduce kinematic constraints to the 

structural system, and are widely used in contact problems to prevent penetration of the materials. Here, we used 

to constrain the relative position of matrix node and reinforcement node, which connects domains. Once stress 

attains a critical value, the multipliers can be disabled, simulating a limit state for adherence. An advantage of 

using this method is that the value of the Lagrange multiplier is the force required to forbid slip, the adherence 

force, yet extra equations in the mathematical model for each Lagrange multiplier are imposed. Nevertheless, from 

the adherence force, the adhesion stress along rebar is calculated. 

In our proposal, both meshes are independent (matrix and reinforcement), having their own nodes. A mirror 

node is immersed on the matrix – connect by kinematic relations – in the same coordinates than those from 

reinforcement fibers. These two nodes – fiber mesh and mirrored mesh – are connect by Langrage multipliers. In 

this way, the constraint is imposed and the adhesion force is obtained. 

Since fiber node and mirrored mesh share the same coordinate, the distance between them is null, thus the 

constraint equation is given by: 

𝑌̅𝑖 − 𝜙̃𝑗(𝜉1, 𝜉2)𝑌̃𝑖
𝑗

= 0 (1) 

where 𝑌̅ are the current fiber nodal coordinates and 𝑌̃ are the current coordinates of the matrix element in which 

the mirror node is immersed. The second term of equation (1) holds the coordinates of the mirror based on the 

dimensionless coordinates (𝜉1, 𝜉2) and the shape function 𝜙̃𝑗 of the matrix element.  
The total energy of the system (𝛱𝐿), considering the Lagrange multiplier, is defined by equation (2): 

𝛱𝐿 = 𝑈 + 𝑃 + 𝕃 (2) 

where 𝑈 is the internal energy potential, 𝑃 is the external energy potential, and 𝕃 is the energy associated to the 

Lagrange multiplier. Since the Lagrange multiplier cannot change the total energy, it becomes a constraint 

equation. The energy functional associated to it is given by: 

𝕃 =  𝜆𝑖 ∙ [𝑌̅𝑖 − 𝜙̃𝑗(𝜉1, 𝜉2)𝑌̃𝑖
𝑗
] (3) 

where 𝜆𝑖 are Lagrange multipliers associated to each direction. 

The constraint equation adds new degrees of freedom to the numerical model, one equation for each Lagrange 

multiplier, even though the mirrored node is immersed on the matrix. The first derivative of the potential 𝕃 with 

respect to the nodal parameters gives the contribution of the constraint equation to the internal forces, which is 

given by equations (4) to (6): 

𝜕𝕃

𝜕𝑌̅𝑖

= 𝜆𝑖 (4) 
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𝜕𝕃

𝜕𝑌̃𝑖

= −𝜆𝑖 (5) 

𝜕𝕃

𝜕𝜆𝑖

= 𝑌̅𝑖 − 𝜙̃𝑗(𝜉1, 𝜉2)𝑌̃𝑖
𝑗
 (6) 

The second derivative of the potential 𝕃 with respect to the nodal parameters gives the contribution of the 

constraint equation to the Hessian matrix: 

𝜕²𝕃

𝜕𝑌̅𝑖𝜕𝑌̅𝑙

=
𝜕²𝕃

𝜕𝑌̃𝑖  𝜕𝑌̃𝑙

=
𝜕²𝕃

𝜕𝑌̅𝑖𝜕𝑌̃𝑙

=
𝜕²𝕃

𝜕𝑌̃𝑖  𝜕𝑌̅𝑙

= 0 (7) 

𝜕²𝕃

𝜕𝑌̅𝑖  𝜕𝜆𝑙

=
𝜕²𝕃

𝜕𝜆𝑖  𝜕𝑌̅𝑙

= 1 (8) 

𝜕²𝕃

𝜕𝑌̃𝑖  𝜕𝜆𝑙

=
𝜕²𝕃

𝜕𝜆𝑖  𝜕𝑌̃𝑙

= −1 (9) 

The Lagrange multiplier has the value, in the equilibrium situation of the structure, of the contact force 

necessary to forbid relative displacement, from which the bond stress can be easily calculated. 

The second way to represent the interaction between rebar and concrete matrix, as mentioned before, is to 

employ springs. These have the advantage of not introducing new variables, as seen in Lagrange multiplier, and 

they may behave non-linearly. As before, two independent meshes with their own nodes are connect but here by 

dimensionless springs. The restraining equation, imposed by the spring, is given by the following potential: 

𝕄 =
𝑘

2
 [ 𝑌̅𝑖 − 𝜙̃𝑗(𝜉1, 𝜉2)𝑌̃𝑖

𝑗
]

2
 (10) 

in which 𝑘 is the spring stiffness. 

The first derivative of the potential 𝕄 with respect to the nodal parameters gives the contribution of the 

constraint equation to the internal forces, which is given by equations (11) and (12). These are the contact forces 

between fiber and matrix, the adhesion force. 

𝜕𝕄

𝜕𝑌̅𝑖

= 𝑘 ∙ [ 𝑌̅𝑖 − 𝜙̃𝑗(𝜉1, 𝜉2)𝑌̃𝑖
𝑗
] (11) 

𝜕𝕄

𝜕𝑌̃𝑖

= −𝑘 ∙ [ 𝑌̅𝑖 − 𝜙̃𝑗(𝜉1, 𝜉2)𝑌̃𝑖
𝑗
] (12) 

The second derivative of the potential 𝕄 with respect to the nodal parameters gives the contribution of the 

constraint equation to the Hessian matrix: 

𝜕²𝕄

𝜕𝑌̅𝑖𝜕𝑌̅𝑙

=
𝜕²𝕄

𝜕𝑌̃𝑖  𝜕𝑌̃𝑙

=  𝑘 (13) 

𝜕²𝕄

𝜕𝑌̅𝑖𝜕𝑌̃𝑙

=
𝜕²𝕄

𝜕𝑌̃𝑖  𝜕𝑌̅𝑙

=  −𝑘 (14) 

In our proposal, the Lagrange multiplier allows to stablish the limit state for adherence. Once it is attained, 

the Lagrange multiplier is disabled. On the other hand, the spring element evaluates the bond-slip behavior. In 

either way, the value obtained are the contact forces, associated to the matrix element direction. To evaluate the 

shear and normal stress to the fiber element, the contact forces are rotated to the tangential and normal directions, 

as given by equation (15): 

{
𝑄
𝑃

} = [
𝑐𝑜𝑠 𝛼 𝑠𝑒𝑛 𝛼
𝑠𝑒𝑛 𝛼 𝑐𝑜𝑠 𝛼

] ∙ {
𝐹𝑐1

𝐹𝑐2
} (15) 

where 𝛼 is fiber element orientation angle, and Q and P are the contact forces components in the tangential and 

normal direction, respectively. If node is common to two elements, the contact force is given by the average value. 

These forces are divided by the influence surface, resulting in shear (𝜏𝑚) and normal (𝜎𝑚) stresses along the 

interface, according to equations (16) and (17), respectively: 

𝜏𝑚 =
𝑄

𝐴𝑖𝑛𝑓

=
𝑄

𝑝 ∙ 𝑐𝑖𝑛𝑓

 (16) 
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𝜎𝑚 =
𝑃

𝐴𝑖𝑛𝑓

=
𝑃

𝑝 ∙ 𝑐𝑖𝑛𝑓

 (17) 

where 𝑝 is the fiber perimeter and 𝑐𝑖𝑛𝑓  is the node influence distance. 

2.3 Physical non-linearity 

The complexity involved in the study of concrete is one of the great challenges for a complete description of 

adhesion problems, due to several factors such as: physical non-linearity at low stress levels; the difference in 

tensile and compressive strengths; creep and shrinkage; and cracking and transmission of stresses through cracks 

(Bono [20]). Based on the theory of plasticity, elasticity, and fracture and damage mechanics, several studies were 

developed to model the behavior of concrete. Among them, the damage model proposed by Mazars [21] is 

widespread and, although isotropic, it able to represent concrete damage. 

The Mazars damage model is based on a scalar damage variable that reduces concrete stiffness when positive 

strain exceeds a reference value. The scalar damage variable is obtained by a linear combination between a tension 

and a compression portion, so that 1 represents a state of total degradation at the point, while 0 means that the 

material is completely intact. The following hypothesis are adopted by the model: damage is caused by positive 

strains; concrete is elastic all the way; loading is monotonous increasing, that is, no residual deformation is 

considered after unloading; damage is isotropic. 

For rebar, an elastoplastic model with isotropic linear hardening was adopted. The stress-strain relationship 

is characterized by an initial elastic stretch followed by a yield point with work hardening. In this point, there may 

be an intense reduction in the stiffness of the material. The longitudinal modulus of elasticity, the yield stress and 

the plastic modulus of isotropic hardening are the parameters for characterization of the material. 

3  Examples 

Three numerical examples to verify the formulations presented, in order to evaluate accuracy, practicality 

and efficiency. Experimental and numerical results were used in the validation examples. 

3.1 Example 1 - Column with eccentric load and geometric imperfection 

In this first example, a non-linear physical and geometrical reinforced concrete column is subjected to an 

eccentric load, considering rebar and concrete perfectly adherent using the embedded technique, to validate the 

numerical model. According to Bratina et al. [22], this is a widespread example in the literature for validating 

numerical models of reinforced concrete, called Foure's column. The results obtained will be compared with the 

experimental test documented by Espion [23] and other authors computational models, such as Liu et al. [24], 

Parente et al. [25] and Ramos [26]. 

The geometric properties, static scheme and loading conditions used in the example are shown in Figure 3, 

in which an initial imperfection of 0.1% of the length of the element (h) is also adopted. The properties of the 

concrete and steel are, respectively: modulus of elasticity, Ec = 3,360 kN/cm² and Es = 21,000 kN/cm²; Poisson's 

ratio, c = 0,20 e s = 0,00; and steel yield stress, considering the perfect elastoplastic behavior, fy = 46.5 kN/cm². 

Besides, following Ramos [26], the adopted parameters for Mazars Damage model were: d0 = 0.0000865, At = 

0.50, Bt = 9,000, Ac = 1.20 e Bc = 1,500. 
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Figure 3. Geometric properties for Foure’s column. Source: Ramos [26]. 

The column was discretized with 960 triangular elements of cubic order and the reinforcement with 900 linear 

elements, resulting in 10,890 degrees of freedom. Displacement control was used, applying a vertical displacement 

of 0.6 cm divided into 50 steps, in the position of F. Thus, the vertical force F was measured and shown in Figure 

4. The maximum load supported by the column was 447.78 kN, a deviation of 0.54% from the experimental result. 

The accuracy shown in Figure 4 indicates that the model can be used to evaluate concrete elements under axial 

and bending loading conditions. 

 

Figure 4. Force vs displacement for Foure’s column. 

3.2 Example 2 - Bar with stiffeners 

In this example, a rectangular bar with four rebars is subject to displacements at both ends, as shown in Figure 

5. Results are compared to Sampaio [27], using a linear model to validate the Lagrange multipliers in the 

connection between matrix and fibers, using the immersed technique. 
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Figure 5. Reinforced beam under prescribed displacement at both ends. 

Beam cross section is given by 1 x 2 cm, and rebar of 0.01 cm². The following properties are adopted: Young 

modulus Efiber = 100.000 kN/cm² and Ematrix = 2.000 kN/cm²; Poisson’s ratio fiber = matrix = 0,0. A displacement 

of 0.5.10-4 is imposed at both ends. Only one quarter of the beam was modeled, using 864 triangular elements of 

cubic approximation for matrix and 240 linear elements to discretize the fibers, resulting in 8,730 degrees of 

freedom. The mesh refinement is shown in Figure 6. 

 

Figure 6. Mesh discretization with greater refinement at the beam end 

Sampaio [27] calculated the interface stresses by decomposing the internal force of the fiber into normal and 

tangential force. In our case, since Lagrange multipliers were used to connect domains, the contact forces are 

readily obtained. Even though reference [27] used cubic elements to discretize the fibers, results are quite close, 

as seen in Figure 7. 

  

Figure 7. Normal force and contact stress with fully adherent model. 

A second analysis was made in which we imposed a limit value of 15,000 N/cm² for the contact stress, 

disconnecting nodes that achieved this value. Free slip will then occur for those nodes, and force should be 

transferred to other elements. This behavior was correctly obtained, as seen in Figure 8. 
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Figure 8. Normal force and contact stress with fiber slip model. 

3.3 Example 3 – Pull out 

A pull-out test is modeled as third example. Spring elements were inserted to connect fiber and matrix 

elements, allowing relative displacements between domains. Paccola, Piedade Neto and Coda [6] proposed this 

example, as seen in Figure 9, considering elastic matrix and fiber, with: Efiber = 200,000 kN/mm² and Ematrix = 

20,000 kN/mm²; matrix = 0.2; ematrix = efiber = 1 mm; and Afiber = 0.1 mm². Perfectly elastoplastic contact is assumed, 

with k = 1000 kN/mm² and y = 51.6 kN/mm². A single force was applied directly to the rebar, until limit of 849.51 

kN is achieved. 

 

Figure 9. Geometry for pull out test. Source: Paccola, Piedade Neto and Coda [6]. 

A uniform mesh of 320 triangular element with cubic approximation and 160 linear elements with linear 

approximation was used to discretize the problem, resulting in 3,468 degrees of freedom. Figure 10 shows the 

mesh and the deformed configuration when F = 849.51 kN – the maximum load that we were able to use, which 

deviates 1.96% from the force found in the reference [6]. 

 

Figure 10. Deformed configuration for F = 849.51 kN. 

As the rebar is pulled, it is expected that the contact shear stresses at ends to be maximum and descending to 

the center. As the fiber slips, stresses at center increases until complete failure. Figure 11a shows the contact shear 

stresses with increasing force, with the expected behavior. In Figure 11b, it is shown the normal stresses, which 

tends to increase and becomes linearly distributed as bond slipping develops. Results are compared to reference 

[6], showing good agreement, indicating that the proposed technique was able to represent the non-linear behavior 

of bond slip. 
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Figure 11. Bond stresses along fiber. (a) Shear stresses; (b) Normal stresses. 

4  Conclusions 

The numerical model presented in this article includes two different approaches to consider the loss of bond 

in reinforced structures, one using Lagrange multipliers and the other using spring elements. To allow the 

reinforcement to be inserted into the matrix independently, the embedding method was used. Due to the high 

stiffness of the connection with the use of Lagrange multipliers, this approach is more suitable for low shear 

stresses at the interface, where the fiber slip is not very expressive, as in the calculation of the bond length of 

reinforced concrete elements. For high shear stresses at the interface, as in fiber pullout tests, the use of spring 

elements is more recommended because it represents the degradation of the interface through the decrease in spring 

stiffness, which allows the fiber to slip. The formulations presented were validated with experimental and 

numerical results from several authors. Thus, it is assumed that the numerical model presented can be applied for 

a more realistic analysis of reinforced concrete structures, considering the physical, geometric and contact non-

linearities inherent to the system. 
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